【做题】agc003E - Sequential operations on Sequence——经典结论
题意:有一个序列,初始是从\(1\)到\(n\)的\(n\)个数。有\(q\)次操作,每次操作给出\(q_i\),把当前的序列重复无数遍,然后截取最前面的\(q_i\)个元素作为新序列。要求输出完成所有\(q\)次操作后,每个\(1\)到\(n\)的数各出现了多少次。
\(n,q \leq 10^5, \, q_i \leq 10^{18}\)
首先一个要点在于操作后序列的长度可以达到\(10^{18}\)。因此,要从每次操作间寻找思路。
首先,我们发现如果一次操作之后又\(q_i\)比它小的操作,那么它就是没有意义的。所以,我们可以让\(q_i\)单调递增。然后,考虑每一次操作后的结果,它就是前一次操作后的结果重复若干遍,再加上前一次操作的一个前缀。前面一部分可以通过计算前一次操作后的结果时乘上一个系数来处理。那么,问题就变成如何后面的不完整部分了。
更确切地说,我们的答案还要加上一次操作后结果的一个前缀,其长度是\(q_i \bmod p_{i-1}\)。这里敏感的人或许已经发现了,我们又一个经典的结论,就是一个数对一个不大于它的数取模后,至少减小一倍。证明显然。那么,我们每次二分小一个不大于它的\(q_i\),最多做\(O(\log n)\)次后就能把这个长度缩小到\(n\)以内。到最后,就是答案序列的一个前缀加了。这里的复杂度是\(O(\log^2 n)\)。
因此,我们就能在\(O(n \log^2 n)\)时间内解决本题。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 100010;
int q,n,len[N],val[N],ans[N],m;
void doit(int x,int v) {
if (!x) return;
int t = upper_bound(len+1,len+m+1,x) - len - 1;
if (t == 0) ans[1] += v, ans[x+1] -= v;
else {
val[t] += (x / len[t]) * v;
doit(x % len[t],v);
}
}
signed main() {
int x;
scanf("%lld%lld",&n,&q);
len[++m] = n;
for (int i = 1 ; i <= q ; ++ i) {
scanf("%lld",&x);
while (m && len[m] >= x) -- m;
len[++m] = x;
}
val[m] = 1;
for (int i = m ; i >= 2 ; -- i) {
val[i-1] += val[i] * (len[i] / len[i-1]);
doit(len[i] % len[i-1],val[i]);
}
ans[1] += val[1];
ans[len[1]+1] -= val[1];
for (int i = 2 ; i <= n ; ++ i)
ans[i] += ans[i-1];
for (int i = 1 ; i <= n ; ++ i)
printf("%lld\n",ans[i]);
return 0;
}
小结:还是不够熟练。以及,想题时用笔整理思路,或许是个好习惯。
【做题】agc003E - Sequential operations on Sequence——经典结论的更多相关文章
- agc003E Sequential operations on Sequence
题意: 有一个数字串S,初始长度为n,是1 2 3 4 …… n. 有m次操作,每次操作给你一个正整数a[i],你先把S无穷重复,然后把前a[i]截取出来成为新的S. 求m次操作后,每个数字在S中出现 ...
- 【agc003E】Sequential operations on Sequence
Portal -->agc003E Description 给你一个数串\(S\),一开始的时候\(S=\{1,2,3,...,n\}\),现在要对其进行\(m\)次操作,每次操作给定一个\(a ...
- Agc003_E Sequential operations on Sequence
传送门 题目大意 $1,2...n,n$个数从小到大排列,有$m$此操作,每次操作给定一个参数$x$,将当且数列作为循环节无限地展开下去,再取前$x$个作为新的数列,求最终的数列每个数出现的次数. $ ...
- 【AGC003 E】Sequential operations on Sequence
Description 你有一个长度为 \(n\) 的序列,第 \(i\) 项为 \(i\). 有 \(m\) 次操作,每次操作给定一个 \(x\),你需要将序列无限循环后截取前 \(x\) 项,作为 ...
- AtCoder Grand Contest 003 E - Sequential operations on Sequence
题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_e 题目大意 一串数,初始为\(1\sim N\),现有\(Q\)个操作,每次操作会把数组长度 ...
- (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO
http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...
- (转)poj算法做题顺序
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj329 ...
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...
- AtCoder Grand Contest 1~10 做题小记
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...
随机推荐
- 《大话设计模式》c++实现 建造者模式
一.UML图 关键词:Subject维护一个Observer列表,Subject执行Notify()时就执行列表中的每个Observer的Update(). 二.概念 观察者模式:定义了一种一对多的依 ...
- 向SQL Server中导入Excel的数据
1. 手动界面导入Excel数据 同 https://jingyan.baidu.com/article/ce09321b9a0e252bff858ff9.html 首先打开并登陆sql serve ...
- Python - 4. Control Structures
From:http://interactivepython.org/courselib/static/pythonds/Introduction/ControlStructures.html Cont ...
- 使用SpringAOP获取一次请求流经方法的调用次数和调用耗时
引语 作为工程师,不能仅仅满足于实现了现有的功能逻辑,还必须深入认识系统.一次请求,流经了哪些方法,执行了多少次DB操作,访问了多少次文件操作,调用多少次API操作,总共有多少次IO操作,多少CPU操 ...
- JDBC (29)
1.JDBC:就是一套API,由sun公司定义类或者定义的接口.(全称 java database connectivity:是Java访问数据库的标准规范),Java提供访问数据库规范称为JDBC, ...
- USMART 组件移植到STM32
USMART是由ALIENTEK开发的一个串口调试助手组件,通过它可以通过串口调试助手,调用程序里面的任何函数并执行,单个函数最多支持10个输入参数,并支持函数返回值显示. USMART支持的参数类型 ...
- JS中对象与数组(大括号{}与中括号[])
一.{ } 大括号,表示定义一个对象,大部分情况下要有成对的属性和值,或是函数. 如:var LangShen = {"Name":"Langshen",&qu ...
- hashCode 一致性hash 算法
1 如果两个对象相同,那么它们的hashCode值一定要相同.也告诉我们重写equals方法,一定要重写 hashCode方法,同一个对象那么hashcode就是同一个(同一个对象什么都是相同的).2 ...
- sudo: apt-get: command not found
apt-get是debian(Ubuntu)才有的包管理器,而在Apple 的OS X系统中是没有的. brew(全称Homebrew)是Mac OSX上的软件包管理工具,能在Mac中方便的安装软件或 ...
- IP代理
import requests # 定义爬取url地址 base_url = 'https://www.baidu.com/' # 定义代理IP地址 proxies = {'http':'http:/ ...