luogu P3924 康娜的线段树
我们可以画图找规律
这里没图,要看图可以去看M_sea dalao的题解(逃
可以发现单个节点\(i\)对答案的贡献为该节点的点权\(*\frac{1}{2^{dep_i}}\)(\(dep_i\)为从上往下\(i\)节点所在的层数-1,也就是深度,令根节点的\(dep=0\))
我们可以发现,所有叶子节点的深度都是最大深度(记为\(ma\))或者最大深度-1,所以除开最下面一层,从上往下第\(i\)层的贡献都是序列中所有数之和\(*\frac{1}{2^{i-1}}\),最下面一层的每个叶子节点的贡献就是点权\(*\frac{1}{2^{ma}}\).为了方便,下面算答案时把所有数\(*2^{ma}\),输出的时候再除掉
我们先预处理最初的答案,记\(b=\sum_{j=1}^{ma}2^j\),序列中第\(i\)个数的贡献为\(a_i*(b+[dep_{i\text{在线段树中对应的叶子节点}}=ma])\)(如果是最后一层就多加上\(a_i\)是吧) 这里字不太好看先憋着
每次的区间加法,记\(c=\)区间内深度为\(ma\)的叶子节点个数,可以发现答案加上了\(x*(r-l+1)*b+x*c\)
最后答案要\(/2^{ma}*qwq\),并且注意将\(2^{ma}\)和\(qwq\)约分,不然会爆\(long\ long\)
我做题时居然那啥到强行用树状数组求前缀和qwq
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=1000000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
#define lc (o<<1)
#define rc ((o<<1)|1)
#define mid ((l+r)>>1)
int n,m,a[N],mm;
LL qwq,b=1,ans,c[N];
void init(int k,int l,int r)
{
if(l==r){mm=max(mm,a[l]=k);return;}
init(k+1,l,mid),init(k+1,mid+1,r);
}
il LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
int main()
{
n=rd(),m=rd(),qwq=rd();
init(0,1,n);
b=(1ll<<(mm+1))-2; //这就是题解中的b
for(re int i=1;i<=n;i++)
{
LL x=rd();
ans+=x*b;
c[i]+=c[i-1];
if(a[i]==mm) ++c[i],ans+=x;
}
mm=1ll<<mm;
LL gg=gcd(mm,qwq);mm/=gg,qwq/=gg;
for(re int i=1;i<=m;i++)
{
int l=rd(),r=rd();
LL x=rd();
ans+=1ll*(r-l+1)*x*b+(c[r]-c[l-1])*x;
printf("%lld\n",ans/mm*qwq);
}
return 0;
}
luogu P3924 康娜的线段树的更多相关文章
- P3924 康娜的线段树(期望)
P3924 康娜的线段树 看起来$O(nlogn)$可过其实由于巨大常数是无法通过的 $O(nlogn)$:70pts 我们手玩样例发现 线段树上某个节点的期望值$f[o]=(f[lc]+f[rc]) ...
- P3924 康娜的线段树
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以 ...
- 洛谷 P3924 康娜的线段树 解题报告
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她\(OI\). 今天康娜学习了一种叫做线段树的神奇魔法,这种 ...
- 洛谷 P3924 康娜的线段树
P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息, ...
- 洛谷P3924 康娜的线段树(期望 前缀和)
题意 题目链接 Sol 思路就是根据期望的线性性直接拿前缀和算贡献.. 这题输出的时候是不需要约分的qwq 如果你和我一样为了AC不追求效率的话直接#define int __int128就行了.. ...
- luogu P2574 XOR的艺术 (线段树)
luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...
- 【原创】洛谷 LUOGU P3373 【模板】线段树2
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第 ...
- 【原创】洛谷 LUOGU P3372 【模板】线段树1
P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...
- Luogu P1198 BZOJ 1012 最大数 (线段树)
手动博客搬家: 本文发表于20170821 14:32:05, 原地址https://blog.csdn.net/suncongbo/article/details/77449455 URL: (Lu ...
随机推荐
- 51nod-1459-迷宫游戏
题意:中文题目.. 解题思路:我的做法就是单源最短路中加个记录分数的数组,如果dis[i]到dis[x]的距离可以被优化,那就连记录分数的数组一起优化,如果第二条路和第一条路的距离相等,那就取最大的分 ...
- BZOJ3152[Ctsc2013]组合子逻辑——堆+贪心
题目链接: BZOJ3152 题目大意: 一开始有一个括号包含[1,n],你需要加一些括号,使得每个括号(包括一开始的)所包含的元素个数要<=这个括号左端点那个数的大小,当一个括号包含另一个括号 ...
- BZOJ3676 APIO2014回文串(manacher+后缀自动机)
由于本质不同的回文子串数量是O(n)的,考虑在对于每个回文子串在第一次找到它时对其暴力统计.可以发现manacher时若右端点移动则找到了一个新回文串.注意这样会漏掉串长为1的情况,特判一下. 现在问 ...
- SQL语言分类DQL,DML,DDL,DCL,DTL
SQL语言共分为五大类: 数据查询语言DQL 数据操纵语言DML 数据定义语言DDL 数据控制语言DCL 数据事物语言DTL DQL 数据查询语言DQL基本结构是由SELECT子句,FROM子句,WH ...
- spoj COT - Count on a tree (树上第K小 LCA+主席树)
链接: https://www.spoj.com/problems/COT/en/ 思路: 首先看到求两点之前的第k小很容易想到用主席树去写,但是主席树处理的是线性结构,而这道题要求的是树形结构,我们 ...
- MT【13】三角函数求范围
解答:AB显然正确,C中$a$取0时,解为三个,C 错误.我们主要看一下D 评:这里提供了一个处理$sin^2xcosx$的常见方法:平方,单变量后用算术几何不等式.
- KEIL中函数定义存在但go to definition却不跳转的原因
可能是 go to definition 函数的地方,被包含在一个未使能的条件编译宏内部,因为这样KEIL在编译时,就未将该条件编译宏内部的信息编译入工程的Browse Information.
- PKUWC 2019 记
“连剑都插在了地上,可是我不应该就这么承认失败,想要到达山顶的人,不应该在山脚下就倒下啊” Day -5 (2019.1.15) 学考结束了,文化课暂停一段.早上飞机前往中山纪念中学.纪中好大呀,果 ...
- 关于程序设计中经常出现的INF和MOD值的设定
摘自:https://www.cnblogs.com/gfvod/p/5548313.html 在取模操作中,我们常把MOD设置为1000000007,模一个大数和模一个质数可以减少冲突,而1e9+7 ...
- 【Linux】fg、bg让你的进程在前后台之间切换
Linux下的fg和bg命令是进程的前后台调度命令,即将指定号码(非进程号)的命令进程放到前台或后台运行.比如一个需要长时间运行的命令,我们就希望把它放入后台,这样就不会阻塞当前的操作:而一些服务型的 ...