【BZOJ】1068: [SCOI2007]压缩(dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1068
发现如果只设一维的话无法转移
那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个是用R还是不用就能确定了(如果用R那么在中间一定变成了缓冲串)
那么可以转移了
设d[i,j]表示前i个串,最近的一个M在i的前边一个格子,的最短长度,有
d[1,1]=1
d[i,i]=min{d[i-1,j]}+2 //即用一次M又补上i,所以+2
d[i,j]=d[pos,j]+1,其中pos=(i+j-1)/2,且是整数(就是确定了M找前一个R),且s[j, pos]=s[pos+1, i]
d[i,j]=min{d[i,j], d[k, j]+i-k}
答案就是min{d[n,i], 1<=i<=n}
因为数据小所以直接暴力处理,也就是n^3的,n^2的话应该挺好优化的
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=52, oo=0x3f3f3f3f;
int d[N][N], n;
char s[N];
bool check(int i, int j) {
int pos=(i+j-1), k=1;
if(pos&1) return 0;
pos>>=1;
if(d[pos][j]>=oo) return 0;
for1(x, j, pos) { if(s[x]!=s[pos+k]) return 0; ++k; }
return 1;
}
int main() {
scanf("%s", s+1);
n=strlen(s+1);
CC(d, oo);
d[1][1]=1;
for1(i, 2, n) {
for1(j, 1, i-1) d[i][i]=min(d[i-1][j], d[i][i]);
d[i][i]+=2;
for1(j, 1, i-1) {
if(check(i, j)) d[i][j]=d[(i+j-1)>>1][j]+1;
for1(k, j, i-1) d[i][j]=min(d[i][j], d[k][j]+i-k);
}
}
int ans=oo;
for1(i, 1, n) ans=min(d[n][i], ans);
print(ans);
return 0;
}
Description
给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程:

另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。
Input
输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。
Output
输出仅一行,即压缩后字符串的最短长度。
Sample Input
Sample Output
HINT
在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。
【限制】
100%的数据满足:1<=n<=50 100%的数据满足:1<=n<=50
Source
【BZOJ】1068: [SCOI2007]压缩(dp)的更多相关文章
- bzoj 1068: [SCOI2007]压缩 DP
1068: [SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 496 Solved: 315[Submit][Status] D ...
- bzoj 1068 [SCOI2007]压缩 区间dp
[SCOI2007]压缩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1644 Solved: 1042[Submit][Status][Discu ...
- [BZOJ 1068] [SCOI2007] 压缩 【记忆化搜索】
题目链接:BZOJ - 1068 题目分析 这种记忆化搜索(区间 DP) 之前就做过类似的,也是字符串压缩问题,不过这道题稍微复杂一些. 需要注意如果某一段是 S1S1 重复,那么可以变成 M + S ...
- bzoj 1068: [SCOI2007]压缩【区间dp】
神区间dp 设f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内只有这一个M,f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内有两个及以上的M 然后显然的转移是f[i][ ...
- BZOJ 1068: [SCOI2007]压缩
Sol 区间DP.这个区间DP需要三维, \(f[i][j][k]\) 表示\([i,j]\) 这个区间中是否存在 \(M\) . 转移有两种,一种是这个区间存在 \(M\) ,那么直接枚举 \(M\ ...
- BZOJ 1087状态压缩DP
状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...
- 1068: [SCOI2007]压缩 - BZOJ
Description 给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息.压缩后的字符串除了小写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一 ...
- 1068. [SCOI2007]压缩【区间DP】
Description 给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息.压缩后的字符串除了小 写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上 ...
- 1068: [SCOI2007]压缩
题解: 区间DP 考虑状态的设计: \(dp[i][j][0/1]\)表示原字符串的\(i-j\)区间有无在中间加\(M\).并且默认在\(i\)之前加入\(M\)压缩后的最小长度,显然有转移: \[ ...
随机推荐
- MySQL 5.1参数
MySQL 5.1.73参数 Variable_name Valueauto_increment_increment 1auto_increment_offset 1autocommit ONa ...
- element-ui table 前端渲染序号 index
1.前端渲染table 序号 2.使用element ui http://element-cn.eleme.io/#/zh-CN/component/table#zi-ding-yi-suo-yin ...
- crypto AES 加密 解密
1.aes加密解密说明 https://juejin.im/entry/59eea48e6fb9a0451968c25f aes是对称加密算法 md5是摘要算法,不算是加密,主要用来对信息一致性和完整 ...
- vim 查找和替换命令 替换/n和\n
一. 字符串的查找 1. vim 中用 / 和 ? 来查找字符串,两者的区别是: /string 会高亮显示光标后匹配的第一个字符串,回车后光标移到该字符串的第一个字母: ?string 会高亮显示光 ...
- servlet awt随机图片验证码
package rd.test; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java. ...
- OSSSME - 开源软件助力中小企业发展
怀揣着为中小企业量身定做一整套开源软件解决方案的梦想开始了一个网站的搭建.http://osssme.org/ [2013-8-2] 由于同时更新2个站点的信息比较繁琐,今后所有和iDempiere. ...
- FFmpeg进行屏幕录像和录音
文章转自:http://www.cucer.cn/2016/03/10/ffmpeg-screen-capture.html 有些时候我们需要对屏幕进行录制,比如制作视频教程,录制直播等.然而这方面的 ...
- FFmpeg + SDL2 实现的视频播放器「视音频同步」
文章转自:http://blog.csdn.net/i_scream_/article/details/52760033 日期:2016.10.8 作者:isshe github:github.com ...
- Weex Ui 是一个基于 Weex 的富交互、轻量级、高性能的移动端 UI 组件库
Github资源:https://github.com/alibaba/weex-ui 预览 你可以通过飞猪.淘宝.天猫.Weex Playground 或者浏览器扫码体验 安装 npm i weex ...
- 《转》ceilometer的数据採集机制入门
问题导读 1.ceilometer负责什么事情? 2.ceilometer 有哪些概念? 3.ceilometer 怎样採集hardware? 附上openstack 官网API http://d ...