Low-ripple-voltage positive-to-negative dc/dc converters find use in many of today's high- frequency and noise-sensitive disk drives, battery-powered devices, portable computers, and automotive applications. Like a positive buck converter, a positive-to-negative converter can have low output-ripple voltage if you place the bulk input capacitor between VIN and VOUT rather than between VIN and ground. A common misconception is that positive-to-negative converters in the first configuration have noisy outputs. This configuration actually solves noise problems rather than introducing them. In either configuration, the VIN and ground pins of the IC connect to VIN and VOUT, respectively (Figure 1 and Figure 2). Therefore, placing the input capacitor between VIN and VOUT is equivalent to placing it between the IC's VIN and ground pins (Figure 1). The other, commonly accepted method of placing the bulk input capacitor between VIN and ground (Figure 2) significantly increases the output-voltage ripple (Figure 3 and Figure 4). To make matters worse, this configuration requires an additional high-frequency bypass capacitor between the VIN and ground pins of the IC.

In simple positive-to-negative converters, such as those in Figure 1 and Figure 2, the output-voltage ripple is

ΔVOUT(P-P)=ESRCOUT×ΔICOUT(P-P).

Low-ESR output capacitors, such as ceramics, help to minimize the output-voltage ripple in dc/dc converters. For a given output-capacitor ESR, you can further reduce the output-voltage ripple by minimizing the current ripple that the output capacitor is forced to absorb. In Figure 2, the output capacitor is part of the high-di/dt switching-current path, making the output voltage ripple proportionately larger. With the bulk input capacitor placed as shown in Figure 1, the peak-to-peak ripple current in the output capacitor is equal to the peak-to-peak ripple current in the inductor:

ΔICOUT(P-P)=ΔIL(P-P)=(VIN×duty cycle)/(fSW×L), where ΔICOUT(P-P)=output ripple current, ΔIL(P-P)=inductor ripple current, and fSW=switching frequency.

When the bulk input capacitor is placed as shown in Figure 2, the peak-to-peak ripple current in the output capacitor is much higher than the inductor's ripple current alone; it is almost equal to the inductor's ripple current plus the input capacitor's ripple current:

ΔICIN(P-P)=IL(P)=IOUT+IIN+ΔIL(P-P)/2, and ΔICOUT (P-P)~ΔIL(P-P)+ΔICIN(P-P). With much lower output-capacitor ripple current, the output capacitor in the circuit in Figure 1can be much smaller than that of the circuit in Figure 2. Also, it needs to handle much less rms ripple current (approximately equal to peak-to-peak ripple current divided by the square root of 12). Another advantage of removing the output capacitor from the high-di/dt switching loop (by judicious placement of the input capacitor) is a greatly simplified layout. You must place the high-di/dt components in Figure 1 in the smallest loop possible to minimize trace inductance and the resulting voltage (noise) spikes. With one fewer component to worry about in the layout, you can more easily create a noise-free circuit using the layout in Figure 1 than it is using the one inFigure 2.

Lower dc/dc-converter ripple by using optimum capacitor hookup的更多相关文章

  1. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  2. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  3. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  4. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  5. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  6. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  7. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. Linux阵列 RAID详解 (转)

    原文链接:http://molinux.blog.51cto.com/2536040/516008   一. RAID详解   二. mdadm工具介绍   三. 创建一个RAID的基本过程   四. ...

  2. centos 下单独安装mysql

    https://www.cnblogs.com/running-mydream/p/4666094.html https://www.cnblogs.com/lzj0218/p/5724446.htm ...

  3. insta php-fpm 的配置

    [global]pid = /www/wdlinux/phps/70/var/run/php-fpm.piderror_log = /www/wdlinux/phps/70/var/log/php-f ...

  4. [ python ] 网络编程(1)

    在本地电脑上有两个python文件 regist.py .login.py 一个注册,一个登录.这两个python一个是写用户信息,一个是读用户信息,要怎么做呢? 通过之前的知识,我们可以通过 reg ...

  5. MySQL-IN和Exists区别

    1.in和exists in是把外表和内表作hash连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询.一直以来认为exists比in效率高的说法是不准确的.  exists ...

  6. Photon3Unity3D.dll 解析二——EventData

    EventData 包含Photon事件的所有内容 Code           用于表示事件,相当于主键ID,LiteEventCode定义了一部分服务端普遍事件事件: Parameters   事 ...

  7. JavaScript 中typeof、instanceof 与 constructor 的区别?

    typeof.instanceof 与 constructor 详解 typeof  一元运算符 返回一个表达式的数据类型的字符串,返回结果为js基本的数据类型,包括number,boolean,st ...

  8. 完美解决doc、docx格式word转换为Html

    http://blog.csdn.net/renzhehongyi/article/details/48767597

  9. Good Bye 2014 F - New Year Shopping

    F - New Year Shopping 对于一种特殊的不可逆的dp的拆分方法.. 也可以用分治写哒. #include<bits/stdc++.h> #define LL long l ...

  10. 解决CentOS7关闭/开启防火墙出现Unit iptables.service failed to load: No such file or directory.

    CentOS7中执行 service iptables start/stop 会报错Failed to start iptables.service: Unit iptables.service fa ...