14:Spark Streaming源码解读之State管理之updateStateByKey和mapWithState解密
首先简单解释一下什么是state(状态)管理?我们以wordcount为例。每个batchInterval会计算当前batch的单词计数,那如果需要计算从流开始到目前为止的单词出现的次数,该如计算呢?SparkStreaming提供了两种方法:updateStateByKey和mapWithState 。mapWithState 是1.6版本新增功能,目前属于实验阶段。mapWithState具官方说性能较updateStateByKey提升10倍。那么我们来看看他们到底是如何实现的。
object UpdateStateByKeyDemo {def main(args: Array[String]) {val conf = new SparkConf().setAppName("UpdateStateByKeyDemo")val ssc = new StreamingContext(conf,Seconds(20))//要使用updateStateByKey方法,必须设置Checkpoint。ssc.checkpoint("/checkpoint/")val socketLines = ssc.socketTextStream("localhost",9999)socketLines.flatMap(_.split(",")).map(word=>(word,1)).updateStateByKey((currValues:Seq[Int],preValue:Option[Int]) =>{val currValue = currValues.sum //将目前值相加Some(currValue + preValue.getOrElse(0)) //目前值的和加上历史值}).print()ssc.start()ssc.awaitTermination()ssc.stop()}}
implicit def toPairDStreamFunctions[K, V](stream: DStream[(K, V)])(implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null):PairDStreamFunctions[K, V] = {new PairDStreamFunctions[K, V](stream)}
def updateStateByKey[S: ClassTag](updateFunc: (Seq[V], Option[S]) => Option[S]): DStream[(K, S)] = ssc.withScope {updateStateByKey(updateFunc, defaultPartitioner())}
def updateStateByKey[S: ClassTag](updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],partitioner: Partitioner,rememberPartitioner: Boolean): DStream[(K, S)] = ssc.withScope {new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, None)}
private [this] def computeUsingPreviousRDD (parentRDD: RDD[(K, V)], prevStateRDD: RDD[(K, S)]) = {// Define the function for the mapPartition operation on cogrouped RDD;// first map the cogrouped tuple to tuples of required type,// and then apply the update functionval updateFuncLocal = updateFuncval finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => {val i = iterator.map { t =>val itr = t._2._2.iteratorval headOption = if (itr.hasNext) Some(itr.next()) else None(t._1, t._2._1.toSeq, headOption)}updateFuncLocal(i)}val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner)val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning)Some(stateRDD)}
object StatefulNetworkWordCount {def main(args: Array[String]) {if (args.length < 2) {System.err.println("Usage: StatefulNetworkWordCount <hostname> <port>")System.exit(1)}StreamingExamples.setStreamingLogLevels()val sparkConf = new SparkConf().setAppName("StatefulNetworkWordCount")// Create the context with a 1 second batch sizeval ssc = new StreamingContext(sparkConf, Seconds(1))ssc.checkpoint(".")// Initial state RDD for mapWithState operationval initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))// Create a ReceiverInputDStream on target ip:port and count the// words in input stream of \n delimited test (eg. generated by 'nc')val lines = ssc.socketTextStream(args(0), args(1).toInt)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))// Update the cumulative count using mapWithState// This will give a DStream made of state (which is the cumulative count of the words)val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {val sum = one.getOrElse(0) + state.getOption.getOrElse(0)val output = (word, sum)state.update(sum)output}val stateDstream = wordDstream.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD))stateDstream.print()ssc.start()ssc.awaitTermination()}}
mapWithState接收的参数是一个StateSpec对象。在StateSpec中封装了状态管理的函数
mapWithState函数中创建了MapWithStateDStreamImpl对象
def mapWithState[StateType: ClassTag, MappedType: ClassTag](spec: StateSpec[K, V, StateType, MappedType]): MapWithStateDStream[K, V, StateType, MappedType] = {new MapWithStateDStreamImpl[K, V, StateType, MappedType](self,spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]])}
/** Internal implementation of the [[MapWithStateDStream]] */private[streaming] class MapWithStateDStreamImpl[KeyType: ClassTag, ValueType: ClassTag, StateType: ClassTag, MappedType: ClassTag](dataStream: DStream[(KeyType, ValueType)],spec: StateSpecImpl[KeyType, ValueType, StateType, MappedType])extends MapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream.context) {private val internalStream =new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec)override def slideDuration: Duration = internalStream.slideDurationoverride def dependencies: List[DStream[_]] = List(internalStream)override def compute(validTime: Time): Option[RDD[MappedType]] = {internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } }}
/** Method that generates a RDD for the given time */override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = {// Get the previous state or create a new empty state RDDval prevStateRDD = getOrCompute(validTime - slideDuration) match {case Some(rdd) =>if (rdd.partitioner != Some(partitioner)) {// If the RDD is not partitioned the right way, let us repartition it using the// partition index as the key. This is to ensure that state RDD is always partitioned// before creating another state RDD using itMapWithStateRDD.createFromRDD[K, V, S, E](rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime)} else {rdd}case None =>MapWithStateRDD.createFromPairRDD[K, V, S, E](spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)),partitioner,validTime)}// Compute the new state RDD with previous state RDD and partitioned data RDD// Even if there is no data RDD, use an empty one to create a new state RDDval dataRDD = parent.getOrCompute(validTime).getOrElse {context.sparkContext.emptyRDD[(K, V)]}val partitionedDataRDD = dataRDD.partitionBy(partitioner)val timeoutThresholdTime = spec.getTimeoutInterval().map { interval =>(validTime - interval).milliseconds}Some(new MapWithStateRDD(prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))}
override def compute(partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = {val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition]val prevStateRDDIterator = prevStateRDD.iterator(stateRDDPartition.previousSessionRDDPartition, context)val dataIterator = partitionedDataRDD.iterator(stateRDDPartition.partitionedDataRDDPartition, context)- //prevRecord 代表一个分区的数据
val prevRecord = if (prevStateRDDIterator.hasNext) Some(prevStateRDDIterator.next()) else Noneval newRecord = MapWithStateRDDRecord.updateRecordWithData(prevRecord,dataIterator,mappingFunction,batchTime,timeoutThresholdTime,removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled)Iterator(newRecord)}
private[streaming] case class MapWithStateRDDRecord[K, S, E](var stateMap: StateMap[K, S], var mappedData: Seq[E])
def updateRecordWithData[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag](prevRecord: Option[MapWithStateRDDRecord[K, S, E]],dataIterator: Iterator[(K, V)],mappingFunction: (Time, K, Option[V], State[S]) => Option[E],batchTime: Time,timeoutThresholdTime: Option[Long],removeTimedoutData: Boolean): MapWithStateRDDRecord[K, S, E] = {// 创建一个新的 state map 从过去的Recoord中复制 (如果存在) 否则创建一下空的StateMap对象val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() }val mappedData = new ArrayBuffer[E]- //状态
val wrappedState = new StateImpl[S]()// Call the mapping function on each record in the data iterator, and accordingly// update the states touched, and collect the data returned by the mapping functiondataIterator.foreach { case (key, value) =>//获取key对应的状态wrappedState.wrap(newStateMap.get(key))- //调用mappingFunction获取返回值
val returned = mappingFunction(batchTime, key, Some(value), wrappedState)//维护newStateMap的值if (wrappedState.isRemoved) {newStateMap.remove(key)} else if (wrappedState.isUpdated|| (wrappedState.exists && timeoutThresholdTime.isDefined)) {newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)}mappedData ++= returned}// Get the timed out state records, call the mapping function on each and collect the// data returnedif (removeTimedoutData && timeoutThresholdTime.isDefined) {newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) =>wrappedState.wrapTimingOutState(state)val returned = mappingFunction(batchTime, key, None, wrappedState)mappedData ++= returnednewStateMap.remove(key)}}MapWithStateRDDRecord(newStateMap, mappedData)}
14:Spark Streaming源码解读之State管理之updateStateByKey和mapWithState解密的更多相关文章
- Spark Streaming源码解读之State管理之UpdataStateByKey和MapWithState解密
本期内容 : UpdateStateByKey解密 MapWithState解密 Spark Streaming是实现State状态管理因素: 01. Spark Streaming是按照整个Bach ...
- Spark Streaming源码解读之JobScheduler内幕实现和深度思考
本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环, ...
- Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考
本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Drive ...
- 15、Spark Streaming源码解读之No Receivers彻底思考
在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...
- Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考
本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式 Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Rece ...
- Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考
本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...
- Spark Streaming源码解读之生成全生命周期彻底研究与思考
本期内容 : DStream与RDD关系彻底研究 Streaming中RDD的生成彻底研究 问题的提出 : 1. RDD是怎么生成的,依靠什么生成 2.执行时是否与Spark Core上的RDD执行有 ...
- Spark Streaming源码解读之Job动态生成和深度思考
本期内容 : Spark Streaming Job生成深度思考 Spark Streaming Job生成源码解析 Spark Core中的Job就是一个运行的作业,就是具体做的某一件事,这里的JO ...
- 16.Spark Streaming源码解读之数据清理机制解析
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/) 本期内容: 一.Spark Streaming 数据清理总览 二.Spark Streami ...
随机推荐
- python 获取文件md5
def GetFileMd5(filename): if not os.path.isfile(filename): return myhash = hashlib.md5() f = file(fi ...
- ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree
题目描述 BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. A ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- POJ3061 Subsequence 尺取or二分
Description A sequence of N positive integers (10 < N < 100 000), each of them less than or eq ...
- JAVA中反射机制三
声明:如需转载请说明地址来源:http://www.cnblogs.com/pony1223 反射三 利用反射获取对象的方法,并调用方法 1.利用反射获取对象的方法,我们仍然利用上面的Person类, ...
- js获取上、下级html元素 js删除html元素方法
js获取下级html元素:htmlEle.childNode; js获取上级html元素:htmlEle.parentNode; js删除当前html元素: htmlEle.removeNode(tr ...
- 云风pbc源码alloc.c
#include <stdlib.h> #include <stdio.h> // 用于统计内存的申请和释放次数匹配 ; void * _pbcM_malloc(size_t ...
- Calf Flac
1.3.3 Calf Flac Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 223 Solved: 42[Submit][Status][Forum] ...
- HDU 1045 Fire Net (深搜)
题目链接 Problem DescriptionSuppose that we have a square city with straight streets. A map of a city is ...
- c语言学习笔记.数组.
数组: 可以存储一个固定大小的相同类型元素的顺序集合,比如int类型的数组.float类型的数组,里面存放的数据称为“元素”. 所有的数组都是由连续的内存位置组成.最低的地址对应第一个元素,最高的地址 ...