IEEEXtreme 10.0 - Goldbach's Second Conjecture
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Goldbach's Second Conjecture
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/goldbachs-second-conjecture
An integer p > 1 is called a prime if its only divisors are 1 and p itself. A famous conjecture about primes is Goldbach's conjecture, which states that
Every even integer greater than 2 can be expressed as the sum of two primes.
The conjecture dates back to the year 1742, but still no one has been able to come up with a proof or find a counterexample to it. We considered asking you prove it here, but realized it would be too easy. Instead we present here a more difficult conjecture, known as Goldbach's second conjecture:
Every odd integer greater than 5 can be expressed as the sum of three primes.
In this problem we will provide you with an odd integer N greater than 5, and ask you to either find three primes p1, p2, p3 such that p1 + p2 + p3 = N, or inform us that N is a counterexample to Goldbach's second conjecture.
Input Format
The input contains a single odd integer 5 < N ≤ 1018.
Output Format
Output three primes, separated by a single space on a single line, whose sum is N. If there are multiple possible answers, output any one of them. If there are no possible answers, output a single line containing the text "counterexample" (without quotes).
Sample Input
65
Sample Output
23 31 11
Explanation
In the sample input N is 65. Consider the three integers 11, 23, 31. They are all prime, and their sum is 65. Hence they form a valid answer. That is, a line containing "11 23 31", "23 31 11", or any permutation of the three integers will be accepted. Other possible answers include "11 37 17" and "11 11 43".
题目解析
将一个奇数分解为三个质数,奇数最大有1018。可以遍历前两个质数,然后判断奇数与两个质数的差是否仍未质数。如果3个质数都有1017,那么肯定会超时。
事实上是,存在解前两个质数都不超过1000。这个时候关键的问题成为了,如何判断一个规模有1018的数为质数。常规的方法复杂度为O(sqrt(n)),会超时。这时候需要一点数论的知识,Miller–Rabin质数测试能够在O((logn)2)判断一个数是否为质数。算法在维基百科详细的介绍。下面程序里的Miller–Rabin质数测试使用的是github上的代码。
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std; #define MAXN 1000
typedef unsigned long long ULL;
typedef long long LL; bitset<MAXN> nums;
int primes[MAXN];
int num_prime = ; void getPrimes(long long max) { // get all primes under max
for(int i=; i<=sqrt(max+0.5); i++) {
if(nums[i] == false) {
primes[num_prime] = i;
num_prime++;
for(long long n=*i; n<max; n+=i) {
nums[n] = true;
}
}
}
for(int i=int(sqrt(max+0.5))+; i<max; i++) {
if(nums[i] == false) {
primes[num_prime] = i;
num_prime++;
}
}
} LL MultiplyMod(LL a, LL b, LL mod) { //computes a * b % mod
ULL r = ;
a %= mod, b %= mod;
while (b) {
if (b & ) r = (r + a) % mod;
b >>= , a = ((ULL) a << ) % mod;
}
return r;
}
template<typename T>
T PowerMod(T a, T n, T mod) { //computes a^n % mod
T r = ;
while (n) {
if (n & ) r = MultiplyMod(r, a, mod);
n >>= , a = MultiplyMod(a, a, mod);
}
return r;
}
template<typename T>
bool isPrime(T n) {
//determines if n is a prime number using Miller–Rabin primality test
// from https://github.com/niklasb/tcr/blob/master/zahlentheorie/NumberTheory.cpp
const int pn = , p[] = { , , , , , , , , };
for (int i = ; i < pn; ++i)
if (n % p[i] == ) return n == p[i];
if (n < p[pn - ]) return ;
T s = , t = n - ;
while (~t & )
t >>= , ++s;
for (int i = ; i < pn; ++i) {
T pt = PowerMod<T> (p[i], t, n);
if (pt == ) continue;
bool ok = ;
for (int j = ; j < s && !ok; ++j) {
if (pt == n - ) ok = ;
pt = MultiplyMod(pt, pt, n);
}
if (!ok) return ;
}
return ;
} int main() {
long long n;
cin >> n; getPrimes(MAXN); for(int i=; i<num_prime; i++) {
for(int j=i; j<num_prime; j++) {
if(isPrime(n-primes[j]-primes[i])) {
printf("%lld %lld %lld", primes[i], primes[j], n-primes[i]-primes[j]);
return ;
} }
} return ;
}
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址
IEEEXtreme 10.0 - Goldbach's Second Conjecture的更多相关文章
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
随机推荐
- 2-sat问题学习记录
如果你不知道什么是sat问题,请看以下问答. Q:sat问题是什麽?A:首先你有n个布尔变量,然后你有一个关于这n个布尔变量的布尔表达式,问你,如果让你随意给这n个布尔变量赋值,这个布尔表达式能否成立 ...
- 手机 safari mac 调试
1.下载 safari technology preview 2.iphone 设置: 打开“设置”程序,进入“Safari”->“高级”页面开启“Web检查器” 3.mac 上打开 safar ...
- jquery动态添加的元素绑定的事件不生效的问题
我们可以通过 $(document).on('click', '#xxx', callback) 这种形式解决. 原因,一般情况下,我们是通过 $('#xxx').click(callback) 这种 ...
- 题解【bzoj3240 [NOI2013]矩阵游戏】
挖坑2333 等我把代码写完了再写
- swift开发常用代码片段
// 绑定事件 cell.privacySwitch.addTarget(self, action: #selector(RSMeSettingPrivacyViewController.switch ...
- 【整理】explain、type、extra用法和结果的含义
EXPLAIN列详情 详细解读:https://www.cnblogs.com/yycc/p/7338894.html explain显示了mysql如何使用索引来处理select语句以及连接表.可以 ...
- 图论&动态规划:虚树
虚树可以看做是对树形动态规划的一种求解优化 对于需要求答案的点p,只保留对答案有影响的节点,从而减少时间 BZOJ2286 dp[i]=min(val[i],Σdp[j](j为i的儿子)),val[i ...
- PhotoSwipe 图片浏览插件使用方法
一.简介 PhotoSwipe 是专为移动触摸设备设计的相册/画廊.兼容所有iPhone.iPad.黑莓6+,以及桌面浏览器.底层实现基于HTML/CSS/JavaScript,是一款免费开源的相册产 ...
- Redis数据类型之散列(hash)
1. 什么是散列 散列类似于一个字典,是一个<K, V>对的集合,不过这个key和value都只能是字符串类型的,不能嵌套,可以看做Java中的Map<String, String& ...
- HBase笔记之远程Shell界面命令行无法删除字符的解决方案
方法一: 设置终端退格键为ASCII 127 在XShell的界面中,设置 文件 --> 属性 --> 终端 --> 键盘 --> BACKSPACE键序列,改为ASCII 1 ...