OrhtoMCL 使用方法
OrthoMCL的使用分13步进行,如下:
1. 安装和配置数据库
Orthomcl可以使用Oracle和Mysql数据库,而在这里只介绍使用Mysql数据库。
修改配置文件/etc/my.cnf,对Mysql进行如下配置:
1. 设置InnoDB_sort_buffer_size的值为可用内存的一半;
2. 设置InnoDB_max_sort_file_size为orthomclBlastParser程序生成文件similarSequences.txt的5倍大小;
3. 软件的说明文档中设置read_buffer_size的值为???,但是设置为3个问号或1个问号,则mysql启动不了。我将其设置为2000M。
2. 安装mcl软件
mcl,即Markov Clustering algorithm,其最新的软件下载地址:http://www.micans.org/mcl/src/mcl-latest.tar.gz。下载后使用’./configure && make && make install’安装即可。
3. 安装并配置OrthoMCL软件
下载OrthoMCL软件(http://orthomcl.org/common/downloads/software/)后,解压缩后,其中包含文件夹:bin、config、doc、lib四个文件夹。
在一个工作目录中运行OrthoMCL,该目录包含数据文件和结果文件。将doc/OrthoMCLEngine/Main/orthomcl.config.template复制到工作目录中。该文件为OrthoMCL的配置文件,以使用mysql数据库为例,其中的内容如下:
dbVendor=mysql #使用的数据库为mysql
dbConnectString=dbi:mysql:orthomcl #使用mysql数据库中名为orthomcl的数据库
dbLogin=test #数据库的用户名
dbPassword=123 #相应的密码
similarSequencesTable=SimilarSequences #
orthologTable=Ortholog
inParalogTable=InParalog
coOrthologTable=CoOrtholog
interTaxonMatchView=InterTaxonMatch
percentMatchCutoff=50
evalueExponentCutoff=-5
oracleIndexTblSpc=NONE
4. 安装orthomcl数据库的表
首先,进入mysql数据库,新建一个名为orthomcl的数据库;然后,使用orthomclInstallSchema命令在数据库中创建一些表,这些表的名字则是orthomcl.config.template配置文件中指定的5个名称。
$ mysql -u test -p
mysql> create database orthomcl;
$ cp /opt/biosoft/orthomclSoftware-v2.0.9/doc/OrthoMCLEngine/Main/orthomcl.config.template .
$ orthomclInstallSchema orthomcl.config.template [log species]
orthomclInstallSchema命令后面不接参数则给出帮助文档。以上命令使用orthomcl.config.template配置文件中的设置生成了数据库中相应的表,如果加入方括号中的内容,则会生成日志文件log,生成的表后缀都是species。
5. 创建orthomcl的输入文件
orthomcl的输入文件为fasta格式文件,但是fasta文件的序列名称要满足这样的要求:
>taxoncode|unique_protein_id
MHDR...
>hsa|sequence_1
MHDR...
>led|scaffold_1.1
MHDR...
序列名第一列是物种的代码,一般是3到4个字母;中间使用’|'符号隔开;第二列是蛋白质序列独一无二的id。
一般输入文件是fasta格式,其序列名由空格或’|'隔开,使用orthomclAdjustFasta程序,将fasta文件转换出兼容orthomcl的fasta文件
$ redun_remove protein.fasta > non_dun_protein.fasta
$ mkdir compliantFasta; cd compliantFasta
$ orthomclAdjustFasta led ../non_dun_protein.fasta 1
上述命令去除可变剪切的蛋白质序列;创建了文件夹compliantFasta;然后使用orthomclAdjustFasta命令选取了protein.fasta序列名的第一列作为输出的fasta文件的序列id;输出的文件为led.fasta.
6. 过滤序列
对compliantFasta文件夹中的序列进行过滤,允许的最短的protein长度是10,stop codons最大比例为20%;生成了两个文件goodProteins.fasta和poorProteins.fasta两个文件。
$ orthomclFilterFasta compliantFasta/ 10 20
compliantFasta只能过滤低质量的序列。而实际上最好还需要过滤掉可变剪切,只留取可变剪切中最长的蛋白质序列,这个需要自行解决。
7. 对goodProteins.fasta中的序列进行BLAST
下载最新版本的Blast+,和最新版本的OrthoMCL DB的protein序列,将OrthoMCL DB的protein序列加上gooProtein.fasta中的序列合到一起做成一个blast+的数据库。然后对基因组的蛋白质序列进行比对。
$ /opt/biosoft/ncbi-blast-2.2.28+/bin/makeblastdb -in orthomcl.fasta -dbtype prot -title orthomcl -parse_seqids -out orthomcl -logfile orthomcl.log
$ /opt/biosoft/ncbi-blast-2.2.28+/bin/blastp -db orthomcl -query goodProteins.fasta -seg yes -out orthomcl.blastout -evalue 1e-5 -outfmt 7 -num_threads 24
生成orthomcl的blast DB需要97秒左右;使用-outfmt 7生成带注释的表格结果,这一步需要很长时间了,取决于电脑的运算性能。我使用24个线程,每分钟运行约27.75条序列,大约7.2个小时,运行1.2万条protein序列的比对。
blast中使用了-seg yes表示使用seg程序来进行过滤,将那些影响比对结果的低复杂度区域过滤掉。blast生成的文件结果,从第1列到第12列分别是:query id, subject id, % identity, alignment length, mismatches, gap opens, q. start, q. end, s. start, q. end, evalue, bit score。
8. 处理Blast的结果
对上一步blast的结果进行处理,从而得到序列的相似性结果,以用于导入到orthomcl数据库中。compliantFasta文件夹中包含下载下来的OrthoMCL DB的所有蛋白质数据的文件orthomcl.fasta.
$ grep -P "^[^#]" orthomcl.blastout > blastresult
$ orthomclBlastParser blastresult compliantFasta > similarSequences.txt
$ perl -p -i -e 's/\t(\w+)(\|.*)orthomcl/\t$1$2$1/' similarSequences.txt
$ perl -p -i -e 's/0\t0/1\t-181/' similarSequences.txt
第一条命令将orthomcl.blastout中的注释行去掉,生成新的文件blastresult,不然再下一个命令中会报错的。
第二条命令生成文件similarSequences.txt,从第1列到第8列分别是:query_id, subject_id, query_taxon, subject_taxon, evalue_mant, evalue_exp, percent_ident, percent_match。值得注意的是subject_taxon是orthomclBlastParser读取的在compliantFasta文件夹中fasta文件的前缀,在此结果中,这一列则全是orthomcl。
第三条命令将subject_taxon修改为正确的分类名。
第四条命令修改evalue_mant, evalue_exp,将evalue为0修改为1e-181,这在后续步骤寻找pairwise relationships时候有要求。
9. 将similarSequences.txt载入到数据库中
生成的similarSequences.txt文件大小为83M,则修改/etc/my.cnf文件,在InnoDB_sort_buffer_size这一行上加一行‘InnoDB_max_sort_file_size = 424960’。数值是83M的5倍。然后运行:
$ orthomclLoadBlast orthomcl.config.template similarSequences.txt
10. 寻找成对的蛋白质
$ orthomclPairs orthomcl.config.template orthomcl_pairs.log cleanup=no
输入为数据库中的表SimilarSequences,和数据库的空表InParalog, Ortholog, CoOrtholog tables;输出为对这些空表的操作。故配置文件中的用户要有 update/insert/truncate权限。
11. 将数据从数据库中导出
$ orthomclDumpPairsFiles orthomcl.config.template
生成了一个文件mclInput和一个文件夹pairs;文件夹中包含3个文件coorthologs.txt,inparalogs.txt,orthologs.txt。
12. 使用mcl进行对pairs进行聚类
$ mcl mclInput --abc -I 1.5 -o mclOutput
13. 对mcl的聚类结果进行编号
$ orthomclMclToGroups led 1 < mclOutput > groups.txt
对聚类结果进行编号,依次为led1,led2, led3…
注意事项
第7步Blast,是整个过程中最关键的一步。有以下2点需要注意:
1. 数据库中的蛋白质序列数量:在OrthoMCL DB中选取和要分析的物种亲缘关系较近的几个物种的基因组,或下载其它公布的基因组,加上要分析的物种的基因组;使用这些基因组总体的蛋白质序列来构建Blast数据库。如果只是使用要分析的物种的蛋白质序列建数据库,则inparalogs文件中成对的序列实际上是paralogs,数目比真正的inparalogs要多很多。使用所有的OrthoMCL DB中的序列,第5版版含150个基因组,信息量太大,不使用几百个核的超算或计算机集群去运行,是很不现实的。
2. 对数据库中所有的蛋白质序列来使用blast比对到该数据库中得到结果。如果只是对要分析的物种进行Blast,则只能得到inparalogs的信息,而没有orthologs和coorthologs。
原文来自:http://www.hzaumycology.com/chenlianfu_blog/?p=1818
OrhtoMCL 使用方法的更多相关文章
- javaSE27天复习总结
JAVA学习总结 2 第一天 2 1:计算机概述(了解) 2 (1)计算机 2 (2)计算机硬件 2 (3)计算机软件 2 (4)软件开发(理解) 2 (5) ...
- mapreduce多文件输出的两方法
mapreduce多文件输出的两方法 package duogemap; import java.io.IOException; import org.apache.hadoop.conf ...
- 【.net 深呼吸】细说CodeDom(6):方法参数
本文老周就给大伙伴们介绍一下方法参数代码的生成. 在开始之前,先补充一下上一篇烂文的内容.在上一篇文章中,老周检讨了 MemberAttributes 枚举的用法,老周此前误以为该枚举不能进行按位操作 ...
- IE6、7下html标签间存在空白符,导致渲染后占用多余空白位置的原因及解决方法
直接上图:原因:该div包含的内容是靠后台进行print操作,输出的.如果没有输出任何内容,浏览器会默认给该空白区域添加空白符.在IE6.7下,浏览器解析渲染时,会认为空白符也是占位置的,默认其具有字 ...
- 多线程爬坑之路-Thread和Runable源码解析之基本方法的运用实例
前面的文章:多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类) 多线程爬坑之路-Thread和Runable源码解析 前面 ...
- [C#] C# 基础回顾 - 匿名方法
C# 基础回顾 - 匿名方法 目录 简介 匿名方法的参数使用范围 委托示例 简介 在 C# 2.0 之前的版本中,我们创建委托的唯一形式 -- 命名方法. 而 C# 2.0 -- 引进了匿名方法,在 ...
- ArcGIS 10.0紧凑型切片读写方法
首先介绍一下ArcGIS10.0的缓存机制: 切片方案 切片方案包括缓存的比例级别.切片尺寸和切片原点.这些属性定义缓存边界的存在位置,在某些客户端中叠加缓存时匹配这些属性十分重要.图像格式和抗锯齿等 ...
- [BOT] 一种android中实现“圆角矩形”的方法
内容简介 文章介绍ImageView(方法也可以应用到其它View)圆角矩形(包括圆形)的一种实现方式,四个角可以分别指定为圆角.思路是利用"Xfermode + Path"来进行 ...
- JS 判断数据类型的三种方法
说到数据类型,我们先理一下JavaScript中常见的几种数据类型: 基本类型:string,number,boolean 特殊类型:undefined,null 引用类型:Object,Functi ...
随机推荐
- vue之全局守卫
Vue的路由守卫是什么东西呢? 第一次接触很懵逼,知道自己遇到了这样一个需求, 在页面之间进行路由跳转时,需要进行一个判断,如果下一个页面是需要登录后才能进入的页面,那么就需要在点击进入该页面的时候进 ...
- Mongodb中在已有Colloection插入/更新相关域值
[{ "confident" : "no", "score" : 0.327355, "label" : "/ ...
- Linux OpenCV 静态链接错误
错误一: undefined reference to `dlopen' undefined reference to `dlerror' undefined reference to `dlsym' ...
- oracle中查询结果集为空,则得到一个默认值
有同事问我上述问题,我把我的实现思路写出来.子查询把查询的结果和默认的结果全部显示.父查询通过伪列rownum来筛选,如果查询有结果,就有几条就显示几条,而不去显示子查询中的默认值:如果查询没有结果, ...
- Mysql按照字段值做分组行转列查询
今天做个后台服务,有个需求是批量生成一批表的数据,如果用BulkInsert会提升很大一截提交效率,但是如果用循环构造提交的Datable,则算法开销太高,所以用这种查询批量查出符合格式的DataTa ...
- hiho1601最大分数 DP
#1601 : 最大得分 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在玩一个游戏.给定一个数组A=[A1, A2, ... AN],小Hi可以指定M个 ...
- 搭建Hadoop2.6.0+Eclipse开发调试环境(以及log4j.properties的配置)
上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境.为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群. 1. 环境 Eclipse版本Luna ...
- Tencent Server Web(TSW) 腾讯开源的nodejs 基础设施
Tencent Server Web(TSW),是一套面向WEB前端开发者,以提升问题定位效率为初衷,提供染色抓包.全息日志和异常发现的Node.js基础设施.TSW关注业务的运维监控能力,适用于 ...
- 13 Stream Processing Patterns for building Streaming and Realtime Applications
原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...
- phoenix elixir 框架简单试用
备注: 官方提供的脚手架工具,我们可以直接使用,生成代码,同时需要nodejs 环境配置(比较简单,参考 相关资料即可) 1. 安装脚手架 mix archive.install https:/ ...