u-boot引导内核过程
目标板:2440
u-boot引导内核启动时,传入内核的参数为bootcmd=nand read.jffs2 0x30007FC0 kernel; bootm 0x30007FC0
一、nand read.jffs2 0x30007FC0 kernel
从nand Flash中将内核读取出来,写到地址为0x30007FC0的内存区域。在嵌入式系统中,Flash是没有分区的,但是为什么在应用过程中,我们总是说Flash已经被分区,那是因为在u-boot源码中,将Flash的空间地址绑定了,比如Flash分为boot区,kernel区,fs区,但是在源码中,只是将boot变量赋予一个地址,将kernel这个变量指向了另一个地址。在代码中的具体体为:/include/configs/
100ask24x0.h
#define MTDPARTS_DEFAULT "mtdparts=nandflash0:256k @0(bootloader)," \ "128k(params)," \ "2m(kernel)," \ "-(root)"
那么内核是如何被读出来的,在/common/cmd_nand.c中do_nand函数中
/* read write */ ) == || strncmp(cmd, ) == )
当内核被读取出来之后,就进入下边的过程了。
二、bootm 0x30007FC0
在/common/cmd_bootm.c中do_bootm函数中启动内核。启动内核的时候,首先对内核的头部要进行操作,原因是
在Flash中保存的内核是由两部分构成的,第一部分是头部,第二部分是真正的内核。而头部的结构如下:
typedef struct image_header { uint32_t ih_magic; /* Image Header Magic Number */ uint32_t ih_hcrc; /* Image Header CRC Checksum */ uint32_t ih_time; /* Image Creation Timestamp */ uint32_t ih_size; /* Image Data Size */ uint32_t ih_load; /* Data Load Address */ uint32_t ih_ep; /* Entry Point Address */ uint32_t ih_dcrc; /* Image Data CRC Checksum */ uint8_t ih_os; /* Operating System */ uint8_t ih_arch; /* CPU architecture */ uint8_t ih_type; /* Image Type */ uint8_t ih_comp; /* Compression Type */ uint8_t ih_name[IH_NMLEN]; /* Image Name */ } image_header_t;
ih_load是加载地址,内核在运行的时候先要将内核放在加载地址,比如参数为bootm 0x30007FC0,如果内核不在0x30007FC0地址,那么u-boot在执行bootm 0x30007FC0命令的时候就重新将内核加载到0x30007FC0地址。
ih_ep是入口地址,若要运行内核,直接跳到ih_ep这个地址就可以运行了。如0x30008000就是内核运行地址。
在/common/cmd_bootm.c中
memmove ((void *) ntohl(hdr->ih_load), (uchar *)data, len);
该函数是将内核移到地址为ih_load(加载地址)的内存中。
if(ntohl(hdr->ih_load) == data) { printf (" XIP %s ... ", name); } else { #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) size_t l = len; void *to = (void *)ntohl(hdr->ih_load); void *from = (void *)data; printf (" Loading %s ... ", name); ) { size_t tail = (l > CHUNKSZ) ? CHUNKSZ : l; WATCHDOG_RESET(); memmove (to, from, tail); to += tail; from += tail; l -= tail; }
这段代码的解释如下:
在ih_load和 ih_ep之间,存在的是内核的头部image_header_t。如果ih_load和 ih_ep之间的大小恰好等于内核的头部的大小的话,那么真正的内核就开始从ih_ep运行。不用再次移动内核,这样就可以加快启动速度。如果ih_load和 ih_ep之间的大小不等于内核的头部的大小那么内核就必须重新移动到ih_ep地址,这样就延长启动时间。
bootm的第一个作用:根据头部将内核移到合适的地方。
当内核移动到正确的地址之后,启动内核的函数为
case IH_OS_LINUX: #ifdef CONFIG_SILENT_CONSOLE fixup_silent_linux(); #endif do_bootm_linux (cmdtp, flag, argc, argv, addr, len_ptr, verify); break;
进入/lib_arm/armLinux.c文件do_bootm_linux函数
do_bootm_linux的作用:
1.启动时会检测内存、Flash……并且将相应的参数告诉内核,设置启动参数。
启动参数的格式为TAG类型。
代码中要设置好几个参数,这儿只是选择性的说几个
setup_start_tag (bd);
setup_memory_tags (bd); 设置内存的参数
setup_commandline_tag (bd, commandline);设置启动时传入内核的参数
setup_end_tag (bd);设置完毕
跳入函数可得:
static void setup_start_tag (bd_t *bd) { params = (struct tag *) bd->bi_boot_params; params->hdr.tag = ATAG_CORE; params->hdr.size = tag_size (tag_core); ; ; ; params = tag_next (params); }
由代码可以得到tag是一个结构体,bi_boot_params为0x300000100,ATAG_CORE为54410001
static void setup_memory_tags (bd_t *bd) { int i; ; i < CONFIG_NR_DRAM_BANKS; i++) { params->hdr.tag = ATAG_MEM; params->hdr.size = tag_size (tag_mem32); params->u.mem.start = bd->bi_dram[i].start; params->u.mem.size = bd->bi_dram[i].start;; params = tag_next (params); } }
bi_dram[i].start;内存的初始地址
bi_dram[i].start;内存的大小
这两个参数的初始值在start_armboot()函数中dram_init可以设置。
static void setup_commandline_tag (bd_t *bd, char *commandline) { char *p; if (!commandline) return; /* eat leading white space */ for (p = commandline; *p == ' '; p++); /* skip non-existent command lines so the kernel will still * use its default command line. */ if (*p == '\0') return; params->hdr.tag = ATAG_CMDLINE; params->hdr.size = ( + ) >> ; strcpy (params->u.cmdline.cmdline, p); params = tag_next (params); }
*commandlinechar 的来源为*commandline = getenv ("bootargs");
那么在终端所获得的信息是bootargs=noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0
root=/dev/mtdblock3 根文件系统在Flash中的第三分区
init=/linuxrc 第一个进程为linuxrc
console=ttySAC0 内核打印信息从串口输出
static void setup_end_tag (bd_t *bd) { params->hdr.tag = ATAG_NONE; ; }
参数设置结束的时候将tag设置为空,size设置为0.
2.跳到入口地址(还是在do_bootm_linux中)。
void (*theKernel)(int zero, int arch, uint params); theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);
thekernel为函数指针指向ih_ep头部的入口地址。
theKernel (, bd->bi_arch_number, bd->bi_boot_params);
调用thekernel直接到入口地址执行内核,此时控制权交给kernel,u-boot的任务就完成了。
bi_arch_number 为机器ID,内核在启动时会比对是否支持硬件平台。
bd->bi_boot_params为传入的参数。
u-boot引导内核过程的更多相关文章
- The Kernel Boot Process.内核引导过程
原文标题:The Kernel Boot Process 原文地址:http://duartes.org/gustavo/blog/ [注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下.一来自己 ...
- mini2440 uboot使用nfs方式引导内核,文件系统
mini2440 uboot使用nfs方式引导内核,文件系统 成于坚持,败于止步 看了一段时间的u-boot了,到今天才真正完全实现u-boot引导内核和文件系统,顺利开机,在此记录完整过程 1.首先 ...
- Tiny4412 u-boot分析(3)u-boot 引导内核流程
在u-boot中,通过bootm命令启动内核.bootm命令的作用是将内核加载到指定的内存地址,然后通过R0.R1.R2寄存器传递启动参数之后启动内核.在启动内核之前需要对环境做一些初始化工作,主要有 ...
- u-boot-2011.06在基于s3c2440开发板的移植之引导内核与加载根文件系统
http://www.linuxidc.com/Linux/2012-09/70510.htm 来源:Linux社区 作者:赵春江 uboot最主要的功能就是能够引导内核启动.本文就介绍如何实现该 ...
- 嵌入式linux加载引导内核和根文件系统的方法
总体来说,嵌入式Linux内核和根文件的引导与PC机差不多.嵌入式linux内核和根文件系统可以存放在各种可能的存储设备中,一般情况下我 们将内核和根文件系统直接烧入到Flash中(包括NOR和NAN ...
- uboot引导linux内核过程详解【转】
http://blog.chinaunix.net/uid-7828352-id-4472376.html 写的不错,尤其是uboot向linux内核传递参数的过程写的比较详细.
- 使用centos引导内核错误:kernel: pnp 00:0b: can't evaluate _CRS: 8
CentOS系统在开机过程中,一直遇到黑屏提示:“kernel: pnp 00:0b: can't evaluate _CRS: 8”,不理会它仍能启动系统并正常工作,未知何故. 经查,这是内核引导的 ...
- <linux是怎么跑的?>傻瓜视角看linux引导启动过程
每天开机关机,除了“等”之外,你得了解你的操作系统开机的时候真正做了什么? 一. 书上都是这么讲的 CPU自身初始化:硬件初始工作,以PC/IP寄存器跳转到BIOS首地址为结束标志. ->加电自 ...
- spring boot 引导
链接:https://www.zhihu.com/question/39483566/answer/243413600 Spring Boot 的优点快速开发,特别适合构建微服务系统,另外给我们封装了 ...
随机推荐
- Interviewe HDU - 3486( 暴力rmq)
面试n个人,可以分任意组数,每组选一个,得分总和严格大于k,问最少分几组 就是暴力嘛...想到就去写吧.. #include <iostream> #include <cstdio& ...
- Stream My Contest UVA - 11865(带权最小树形图+二分最小值最大化)
#include <iostream> #include <cstdio> #include <sstream> #include <cstring> ...
- 第三周——构建一个简单的Linux系统MenuOS
[洪韶武 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ] 第三周 构建一个 ...
- 复习JavaScript随手记
数据类型 基本类型 string number boolean undefined number类型,包含整数浮点数 NaN和自己都不相等,涉及NaN的计算结果都是NaN isNaN()函数用于判断一 ...
- Emgu.CV.CvInvoke”的类型初始值设定项引发异常
http://zhidao.baidu.com/link?url=VHkw3qZxp7HumQX_r-4ljPiy-N4A7yNK1Xn5q6tjPb16WvBGy6RFKrmKEhtgJ2PACAk ...
- 【mysql】测试方案整理
http://www.cnblogs.com/callhe/ https://www.digitalocean.com/community/tutorials/how-to-measure-mysql ...
- shell unittest工具
shUnit2: https://github.com/kward/shunit2 用法非常简单,看看readme就行了.
- HBuilder mui登录和访问控制教程--转载
HBuilder mui登录和访问控制教程 mui中提供了登录的模板页,但是对于登录后各个页面的访问控制,刷新等并没有官方的推荐方案.我在这里简单说一种初级的解决方案吧,肯定有不足指出,欢迎批评指正. ...
- Jenkins使用教程之管理节点
通常的情况下在我们的一个项目当中,项目会有多个分支系统,而我们不可能为每个分支系统都配置一个jenkins服务,这样既浪费资源,也增加构建部署的难度,为了解决这个问题jenkins给使用者提供了非常强 ...
- Dubbo 的应用
--- 用于大规模服务化,通过在消费方获取服务提供方的地址列表,实现负载均衡,减轻服务器压力. 最简单调用图 节点角色说明: l Provider: 暴露服务的服务提供方. l Consumer ...