numapprox[minimax] - minimax rational approximation

Calling Sequence

 

minimax(f, x=a..b,
[m, n], w,
'maxerror')

minimax(f, a..b,
[m, n], w,
'maxerror')

 

Parameters

 

f

-

procedure or expression representing the function

x

-

variable name appearing in f, if f is an expression

a, b

-

numerical values specifying the interval of approximation

m

-

integer specifying the desired degree of the numerator

n

-

integer specifying the desired degree of the denominator

w

-

(optional) procedure or expression specifying the weight function, default 1

maxerror

-

(optional) a name which will be assigned the minimax norm

 
 

Description

 
• 

This procedure computes the best minimax rational approximation of degree (m, n)
for a given real function f(x) on the interval [a, b]
with respect to the positive weight function w(x), via the Remez algorithm.

• 

Specifically, it computes the rational expression  such
that

(1)

 
  

is minimized over all rational expressions  with
numerator of degree <= m and denominator of degree <= n.

• 

Note that if f(x) is nonzero on the interval of approximation then the relative error will be minimized by specifying the weight function 

si=7595/file06595/math158.png" width="108" height="44" alt="w(x) = 1/abs(f(x))" style="border:0px; vertical-align:-17px">.

• 

If the second argument is a range a..b then
the first argument is understood to be a Maple operator, and the result will be returned as an operator. If the second argument is an equation 

si=7595/file06595/math166.png" width="63" height="24" alt="x = a .. b" style="border:0px; vertical-align:-6px"> then
the first argument is understood to be an expression in the variable x, and the result will be returned as an expression.
In all cases, the numerator and denominator of the result are each expressed in Horner (nested multiplication) form.

• 

Note that for the purpose of evaluating a rational function efficiently (minimizing the number of arithmetic operations), the rational function should be converted to a continued-fraction form. See 

path=numapprox%2fconfracform" style="color:rgb(153,0,0)">numapprox[confracform].

• 

If 

si=7595/file06595/math177.png" width="44" height="24" alt="n = 0" style="border:0px; vertical-align:-6px"> or
if the third argument is simply an integer m then the best minimax polynomial approximation of degreem is
computed.

• 

If the fourth argument w is specified then it is assumed to be an
operator if f is an operator, and it is assumed to be an expression if f is
an expression. If the fourth argument is omitted then the weight function is understood to be  for
all x.

• 

If the fifth argument 'maxerror' is present then it must be a name.
Upon return, its value will be an estimate of the minimax norm specified by equation (1) above.

• 

Various levels of user information will be displayed during the computation if infolevel[minimax] is
assigned values between 1 and 3.

• 

The command with(numapprox,minimax) allows the use of the abbreviated
form of this command.

 

Examples

 

si=7595/file06595/math214.png" width="144" height="24" alt="with(numapprox)" style="border:0px; vertical-align:-6px">

si=7595/file06595/math218.png" width="182" height="29" alt="minimax(exp(x), x = 0 .. 1, 5)" style="border:0px; vertical-align:-6px">

si=7595/file06595/math221.png" width="726" height="42" alt=".9999988706+(1.000079450+(.4990961405+(.1704019041+(0.3480060952e-1+0.1390372558e-1*x)*x)*x)*x)*x" align="middle" style="border:0px; vertical-align:-24px">

(1)

si=7595/file06595/math228.png" width="434" height="44" alt="(.9502547393+(-0.529094917e-1-0.8416376466e-1*x)*x)/(.9501754297+(-0.5104192162e-1+0.6724432790e-1*x)*x)" style="border:0px; vertical-align:-17px">

(2)

(3)

si=7595/file06595/math239.png" width="89" height="24" alt="Digits := 14" style="border:0px; vertical-align:-6px">

(4)

si=7595/file06595/math246.png" width="361" height="49" alt="" style="border:0px; vertical-align:-22px">

(5)

si=7595/file06595/math256.png" width="173" height="29" alt="0.12110972781516e-8" style="border:0px; vertical-align:-6px">

(6)
 

See Also

 

numapprox[confracform]


maple minimax函数的更多相关文章

  1. Matlab常用函数集锦

    ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素 ...

  2. MATLAB相关快捷键以及常用函数

    MATLAB快捷键大全 F1帮助 F2改名F3搜索 F4地址 F5刷新 F6切换 F10菜单 CTRL+A全选 CTRL+C复制 CTRL+X剪切 CTRL+V粘贴 CTRL+Z撤消 CTRL+O打开 ...

  3. matlab中help所有函数功能的英文翻译

    doc funname 在帮助浏览器中打开帮助文档 help funname 在命令窗口打开帮助文档 helpbrowser 直接打开帮助浏览器 lookfor funname 搜索某个关键字相关函数 ...

  4. Maple重点知识总结

    Maple中的evalf与evalhf evalf 可作用于单值 可作用于List 可作用于Set 可作用于Vector(<..>) 可作用于Matrix(<..|..|..> ...

  5. matlab函数列表(A~Z)【转】

    A a abs 绝对值.模.字符的ASCII码值acos 反余弦acosh 反双曲余弦acot 反余切acoth 反双曲余切acsc 反余割acsch 反双曲余割align 启动图形对象几何位置排列工 ...

  6. MATLAB命令大全

    一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos ...

  7. [转] MATLAB快捷键

    原文地址:MATLAB快捷键大全 (转载)作者:掷地有声 一.索引混排版 备注:删除了如F1(帮助)等类型的常见快捷命令 SHIFT+DELETE永久删除 DELETE删除 ALT+ENTER属性 A ...

  8. matlab快捷键大全

    原文地址,点此查看 一.常用对象操作 除了一般windows窗口的常用功能键外. 1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看. 2.who   可以查看当前 ...

  9. [转载] MATLAB快捷键

    原文地址,点此查看 一.常用对象操作 除了一般windows窗口的常用功能键外. 1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看. 2.who   可以查看当前 ...

随机推荐

  1. 【redis】spring boot中 使用redis hash 操作 --- 之 使用redis实现库存的并发有序操作

    示例: @Autowired StringRedisTemplate redisTemplate; @Override public void dealRedis(Dealer dealer) { d ...

  2. UML建模工具Visio 、Rational Rose、PowerDesign的比较

    UML建模工具Visio .Rational Rose.PowerDesign的比较   ROSE是直接从UML发展而诞生的设计工具,它的出现就是为了对UML建模的支持,ROSE一开始没有对数据库端建 ...

  3. EntityFramework:EF Migrations Command Reference

    Entity Framework Migrations are handled from the package manager console in Visual Studio. The usage ...

  4. VS收集插件

    有空再做细细解说,大部分童鞋应该都在用1.Achievements这个就是传说中的VS成就插件了,一边编程一边解锁成就 2.Spell Checker拼写检查插件,这个插件能够实时帮你检查注释或字符串 ...

  5. 惠普HP compaq康柏系列 CQ40笔记本电脑拆机除尘

    工具:两用螺丝刀(一字口的拆CPU,十字口的拆其它所有螺丝)    散热硅胶和CPU上的散热贴 正面照(A面) 反面照(D面) 第一步:拆掉电池,不要忘记了红圈这里的两颗螺丝.共6颗小螺丝. 第二步: ...

  6. json-lib 的maven dependency

    项目中要用到json-lib,mvnrepository.com查找它的dependency时结果如下: <dependency> <groupId>net.sf.json-l ...

  7. 【属性动画示例】Property Animation

    MainActivity 属性动画常用操作 // 可操控的属性有:alpha:x/y:scaleX/scaleY:rotation/rotationX/rotationY:transitionX/tr ...

  8. 右键菜单 GenericMenu

    http://www.cnblogs.com/zhaoqingqing/p/3799294.html 自定义窗口中使用右键菜单: // This example shows how to create ...

  9. 算法笔记_039:杨辉三角形(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 问题描述 杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数. 它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加. ...

  10. Win8多平台引用配置

    之前移植过DLNA的库,这个库是C++写的,然后我们的项目是C#的.接着很郁闷的事情发生了,主项目引用一个C#的DLL,然后这个DLL引用这个C++/CX封装的库.如果有C++的源代码的话,做项目依赖 ...