Coins
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions:43969   Accepted: 14873

Description

People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch. 
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins. 

Input

The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.

Output

For each test case output the answer on a single line.

Sample Input

3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0

Sample Output

8
4

Source

题意:有n种硬币,每一枚有一个价值和个数。现在取出一些硬币,面值相加得到结果S。问1~m之间可以得到多少种结果S

思路:硬币为物品,面值为体积,m为背包总容积。一次考虑每种硬币是否被用于拼成最终的面值,以“已经考虑过的物品种数”i作为DP的阶段。阶段i时,dp[j]表示前i种硬币能否拼成面值j。

但是这道题只关注“可行性”而不是“最优性”,可以发现前i种硬币能够拼成面值j只有两种可能。1、前i-1种就可以拼成面值j 2、使用了第i种硬币,发现dp[j-ai]为true,从而dp[j]变为true

于是就有一种贪心策略:设used[j]表示dp[j]在阶段i时为true至少要用到多少枚第i种硬币,并尽量选择第一种情况。在dp[j-ai]为true时,如果dp[j]已经为true,则不执行dp转移,并令used[j]=0。否则执行dp[j] = dp[j] or dp[j - ai]的转移,并令used[j] = used[j - ai] + 1

多重背包问题可以将物品拆分变成01背包问题。拆分方法有直接拆分法,二进制拆分法和单调队列。

二进制拆分法是把数量为Ci的第i种物品拆分成p+2个物品,p是满足2^0 + 2^1 + 2^2 + ... + 2^p <= Ci的最大的整数。

他们的体积分别为2^0*Vi, 2^1*Vi, ..., 2^p*Vi, Ri * Vi, 其中Ri= Ci - 2^0 - 2^1 - 2^2 - ... - 2^p

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n, m;
const int maxn = ;
const int maxm = 1e5 + ;
int a[maxn], c[maxn];
int used[maxm];
bool dp[maxm]; int main()
{
while(scanf("%d%d", &n, &m) != EOF && (n || m)){
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = ; i <= n; i++){
scanf("%d", &c[i]);
} memset(dp, , sizeof(dp));
dp[] = true;
for(int i = ; i <= n; i++){
memset(used, , sizeof(used));
for(int j = a[i]; j <= m; j++){
if(!dp[j] && dp[j - a[i]] && used[j - a[i]] < c[i]){
dp[j] = true;
used[j] = used[j - a[i]] + ;
}
}
} int ans = ;
for(int i = ; i <= m; i++){
if(dp[i])ans++;
}
printf("%d\n", ans);
}
return ;
}

poj1742 Coins【多重背包】【贪心】的更多相关文章

  1. $POJ1742\ Coins$ 多重背包+贪心

    Vjudge传送门 $Sol$ 首先发现这是一个多重背包,所以可以用多重背包的一般解法(直接拆分法,二进制拆分法...) 但事实是会TLE,只能另寻出路 本题仅关注“可行性”(面值能否拼成)而不是“最 ...

  2. POJ1742 Coins[多重背包可行性]

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 34814   Accepted: 11828 Descripti ...

  3. POJ1742:Coins(多重背包)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  4. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  5. HDU-2844 Coins(多重背包)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. POJ3260——The Fewest Coins(多重背包+完全背包)

    The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...

  7. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  8. HDU2844 Coins 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

    F. PolandBall and Gifts   It's Christmas time! PolandBall and his friends will be giving themselves ...

  10. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

随机推荐

  1. (原创)android6.0系统 PowerManager深入分析(很具体)

    概述 一直以来,电源管理是电子产品设计中很重要的环节.也是不论什么电子设备中最为重要的系统模块之中的一个,优秀的电源管理方案.可以提供持久的续航能力,良好的用户体验.更能提升电子产品的竞争力. 移动设 ...

  2. atitit。mssql sql server 转换mysql 及 分页sql ast的搭建

    atitit.mssql sql server 转换mysql  及 分页sql ast的搭建 1. 主要的的转换::函数的转换,分页的转换 1 2. 思路::mssql sql >>as ...

  3. 以byte方式讀取SPD的數據(SMBus Controller在PCH中)

    Reading A Byte of SMBus EEPROM DataThe following steps have to be followed for the System BIOS to re ...

  4. [svc]linux buffer和cache的区别

    通俗理解buffer,cache Cache:缓存区,是高速缓存,是位于CPU和主内存之间的容量较小但速度很快的存储器,因为CPU的速度远远高于主内存的速度,CPU从内存中读取数据需等待很长的时间,而 ...

  5. ZOJ 2610 Puzzle 模拟

    大模拟:枚举6个方向.检查每一个0是否能移动 Puzzle Time Limit: 2 Seconds      Memory Limit: 65536 KB Little Georgie likes ...

  6. Linux Ubuntu 打开.exe文件

    这两天在编译Android源码,进行到要在Linux里安装烧录软件那一步,要先装驱动,故了解了如何在linux下打开.exe文件. .exe 文件在linux下不能直接打开,可有两种方式打开:. 1. ...

  7. [Linux]read/write和fread/fwrite有什么区别

    转自:http://blog.csdn.net/xiaofei0859/article/details/51145051 二者都是对文件进行操作,那么二者有什么区别,用的时候该如何选择呢? 1. 区别 ...

  8. Trie树 + DFS - CSU 1457 Boggle

    Boggle Problem's Link: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1457 Mean: 给定n个串,有m个询问. 每个询问 ...

  9. C++ 指针引用

    //指针引用 #include<iostream> using namespace std; struct Teacher{ ]; int age; }; int InitA(Teache ...

  10. php -- strpos,stripos,strrpos,strripos,strstr,strchr,stristr,strrchr

    strpos() 函数 语法: mixed strpos ( string $haystack , mixed $needle [, int $offset = 0 ] ) 查找 needle 在 h ...