Coins
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions:43969   Accepted: 14873

Description

People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch. 
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins. 

Input

The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.

Output

For each test case output the answer on a single line.

Sample Input

3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0

Sample Output

8
4

Source

题意:有n种硬币,每一枚有一个价值和个数。现在取出一些硬币,面值相加得到结果S。问1~m之间可以得到多少种结果S

思路:硬币为物品,面值为体积,m为背包总容积。一次考虑每种硬币是否被用于拼成最终的面值,以“已经考虑过的物品种数”i作为DP的阶段。阶段i时,dp[j]表示前i种硬币能否拼成面值j。

但是这道题只关注“可行性”而不是“最优性”,可以发现前i种硬币能够拼成面值j只有两种可能。1、前i-1种就可以拼成面值j 2、使用了第i种硬币,发现dp[j-ai]为true,从而dp[j]变为true

于是就有一种贪心策略:设used[j]表示dp[j]在阶段i时为true至少要用到多少枚第i种硬币,并尽量选择第一种情况。在dp[j-ai]为true时,如果dp[j]已经为true,则不执行dp转移,并令used[j]=0。否则执行dp[j] = dp[j] or dp[j - ai]的转移,并令used[j] = used[j - ai] + 1

多重背包问题可以将物品拆分变成01背包问题。拆分方法有直接拆分法,二进制拆分法和单调队列。

二进制拆分法是把数量为Ci的第i种物品拆分成p+2个物品,p是满足2^0 + 2^1 + 2^2 + ... + 2^p <= Ci的最大的整数。

他们的体积分别为2^0*Vi, 2^1*Vi, ..., 2^p*Vi, Ri * Vi, 其中Ri= Ci - 2^0 - 2^1 - 2^2 - ... - 2^p

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n, m;
const int maxn = ;
const int maxm = 1e5 + ;
int a[maxn], c[maxn];
int used[maxm];
bool dp[maxm]; int main()
{
while(scanf("%d%d", &n, &m) != EOF && (n || m)){
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = ; i <= n; i++){
scanf("%d", &c[i]);
} memset(dp, , sizeof(dp));
dp[] = true;
for(int i = ; i <= n; i++){
memset(used, , sizeof(used));
for(int j = a[i]; j <= m; j++){
if(!dp[j] && dp[j - a[i]] && used[j - a[i]] < c[i]){
dp[j] = true;
used[j] = used[j - a[i]] + ;
}
}
} int ans = ;
for(int i = ; i <= m; i++){
if(dp[i])ans++;
}
printf("%d\n", ans);
}
return ;
}

poj1742 Coins【多重背包】【贪心】的更多相关文章

  1. $POJ1742\ Coins$ 多重背包+贪心

    Vjudge传送门 $Sol$ 首先发现这是一个多重背包,所以可以用多重背包的一般解法(直接拆分法,二进制拆分法...) 但事实是会TLE,只能另寻出路 本题仅关注“可行性”(面值能否拼成)而不是“最 ...

  2. POJ1742 Coins[多重背包可行性]

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 34814   Accepted: 11828 Descripti ...

  3. POJ1742:Coins(多重背包)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  4. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

  5. HDU-2844 Coins(多重背包)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. POJ3260——The Fewest Coins(多重背包+完全背包)

    The Fewest Coins DescriptionFarmer John has gone to town to buy some farm supplies. Being a very eff ...

  7. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  8. HDU2844 Coins 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

    F. PolandBall and Gifts   It's Christmas time! PolandBall and his friends will be giving themselves ...

  10. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

随机推荐

  1. [elk]elasticsearch dashboard+保留10天内索引+导入导出备份

    es dashboard 有两款 head 这款我一直在用 https://github.com/mobz/elasticsearch-head 先修改es的配置文件: elasticsearch.y ...

  2. solr 简单搭建 数据库数据同步(待续)

    原来在别的公司负责过文档检索模块的维护(意思就是不是俺开发的啦). 所以就略微接触和研究了下文档检索. 文档检索事实上是全文检索.是通过一种技术把N多文档进行一定规律的分割归类,然后创建易于搜索的索引 ...

  3. quick cocos2d-x 2.2.4 window环境调试

    BabeLua简介 BabeLua是一款基于VS2012/2013(简称VS)的免费开源的Lua集成开发环境,在Lua编辑和调试方面,具有如下功能和特性: ●Lua语法高亮 ●语法检查 ●自动补全 ● ...

  4. socket发送http请求

  5. Python正则表达式中的re.S的作用

    在Python的正则表达式中,有一个参数为re.S.它表示“.”(不包含外侧双引号,下同)的作用扩展到整个字符串,包括“\n”.看如下代码: import re a = '''asdfhellopas ...

  6. SharpDevelop浅析_4_TextEditor_自动完成、代码折叠……

    SharpDevelop浅析_4_TextEditor_自动完成.代码折叠…… SharpDevelop浅析_4_TextEditor_自动完成.代码折叠…… Parser及其应用: Code Com ...

  7. 跟着百度学习php之ThinkPHP的运行流程-1

    我在index\Lib\Action\目录下新建了一个ShowAction.class.php文件.ps:该目录是控制器的目录. 然后这个文件中继承了action这个类.代码如下: <?php ...

  8. flume中Source

    Spooling Directory Source: 以下2组参数解释: fileHeader及fileHeaderKey:fileHeader是个布尔值,可配置为true或者false,表示在flu ...

  9. Windows 一键安装 Redmine 部署及配置

    Redmine的主要功能包括 添加和跟踪问题(或让您的团队完成). 使用Redmine内置的甘特图和日历计划和管理您的项目. 使用项目wiki和文档管理器来存储项目文档. 配置通知以保持有关问题状态和 ...

  10. STUN协议简析

    http://blog.csdn.net/mazidao2008/article/details/4934257 ——————————————————————————————————————————— ...