1、从独立性假设到联合概率链
朴素贝叶斯中使用的独立性假设为
P(x1,x2,x3,...,xn)=P(x1)P(x2)P(x3)...P(xn)

去掉独立性假设,有下面这个恒等式,即联合概率链规则
P(x1,x2,x3,...,xn)=P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,x2,...,xn−1)

其中,xi代表一个词,联合概率链规则表示句子中每个词都跟前面一个词有关,而独立性假设则是忽略了一个句子中词与词之间的前后关系。

2、从联合概率链规则到n-gram语言模型
联合概率链规则是考虑了句子中每个词之间的前后关系,即第n个词xn与前面n−1个词x1,x2,..,xn−1有关,而n-gram语言模型模型则是考虑了n个词语之间的前后关系,比如n=2时(二元语法(bigram,2-gram)),第n个词xn与前面2−1=1个词有关,即
P(x1,x2,x3,...,xn)=P(x1)P(x2|x1)P(x3|x2)...P(xn|xn−1)     (3)

比如n=3时(三元语法(trigram,3-gram)),第n个词xn与前面3−1=2个词有关,即
P(x1,x2,x3,...,xn)=P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|xn−2,xn−1)(4)

公式(3)(4)即马尔科夫假设(Markov Assumption):即下一个词的出现仅依赖于它前面的一个或几个词。

3、N-gram语言模型与马尔科夫假设
如果对向量 X 采用条件独立假设,就是朴素贝叶斯方法。
如果对向量 X 采用马尔科夫假设,就是N-gram语言模型。

原文:https://blog.csdn.net/hao5335156/article/details/82730983

N-gram语言模型与马尔科夫假设关系(转)的更多相关文章

  1. 隐马尔科夫模型HMM学习最佳范例

    谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...

  2. 强化学习(二)马尔科夫决策过程(MDP)

    在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策 ...

  3. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  4. 隐藏马尔科夫模型HMM

    概率图模型 HMM 先从一个具体的例子入手,看看我们要解决的实际问题.例子引自wiki.https://en.wikipedia.org/wiki/Hidden_Markov_model Consid ...

  5. 隐马尔科夫模型(HMM)与词性标注问题

    一.马尔科夫过程: 在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 (过去 ).例如森林中动物头数的变化构成——马尔可夫过程.在现实世界中,有很多过程都是马尔可夫过程,如液体 ...

  6. 机器学习理论基础学习13--- 隐马尔科夫模型 (HMM)

    隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为 ...

  7. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  8. 隐马尔科夫模型HMM

    崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...

  9. HMM(隐马尔科夫模型)——本质上就是要预测出股市的隐藏状态(牛市、熊市、震荡、反弹等)和他们之间的转移概率

    摘自:http://blog.csdn.net/baskbeast/article/details/51218777 可以看 <统计学习方法>里的介绍 举一个日常生活中的例子,我们希望根据 ...

随机推荐

  1. CODE FESTIVAL 2016 qualA Grid and Integers

    划年代久远的水 题意 有一个R*C的棋盘,要求在每个格子上填一个非负数,使得对任意一个2*2的正方形区域,左上角和右下角的数字之和等于左下角和右上角的数字之和.有一些格子已经被填上了数字,问现在能否满 ...

  2. 【数据库_Postgresql】数据库主键自增长之加序列和不加序列2种方法

    将表的主键进行序列增加之后可以在数据库层面自动主键id增长 方法如下:先建序列,然后建表关联id主键,然后添加语句,不用考虑id主键 DROP SEQUENCE IF EXISTS "pub ...

  3. 在Linux上编译使用tcmalloc

    项目需要使用tcmalloc,比较简单的方法是安装tcmalloc相关包(gpertools)后,将tcmalloc的静态库提取出来,在编译项目内核(执行makefile)时,链接上静态库即可. 这里 ...

  4. 命令行下django-admin.py参数不起作用的问题解决

    django官方turial中创建本地web站点时,使用如下命令 django-admin.py startproject mysite 说一下我在使用时碰到的几个问题: 1.无法找到django-a ...

  5. 【刷题】BZOJ 1211 [HNOI2004]树的计数

    Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要 ...

  6. [CF1111C]Creative Snap

    题目大意:有一个长度为$2^n(n\leqslant30)$的格子,有$k(k\leqslant10^5)$个球,分布在这些格子中,有两种消灭格子的方法: 1. 若一段格子长度大于等于$2$,可以对半 ...

  7. 【HDU4336】Card Collector (动态规划,数学期望)

    [HDU4336]Card Collector (动态规划,数学期望) 题面 Vjudge 题解 设\(f[i]\)表示状态\(i\)到达目标状态的期望 \(f[i]=(\sum f[j]*p[j]+ ...

  8. HDU.1689 Just a Hook (线段树 区间替换 区间总和)

    HDU.1689 Just a Hook (线段树 区间替换 区间总和) 题意分析 一开始叶子节点均为1,操作为将[L,R]区间全部替换成C,求总区间[1,N]和 线段树维护区间和 . 建树的时候初始 ...

  9. 【bzoj4811】由乃的OJ

    Portal --> bzoj4811 Solution  这题可以用树剖+线段树做也可以用LCT做,不过大体思路是一样的  (接下来先讲的是树剖+线段树的做法,再提LCT的做法) ​  首先位 ...

  10. python基础---- __getattribute__----__str__,__repr__,__format__----__doc__----__module__和__class__

    目录: 一. __getattribute__ 二.__str__,__repr__,__format__ 三.__doc__ 四.__module__和__class__ 一. __getattri ...