51nod1773 A国的贸易
而calc(u,v)定义为u,v按位异或的结果的二进制表示中数字1的个数。
每过一天,可以交易的城市之间就会交易一次。
请问 t 天后,每个城市会有多少货物。
答案可能会很大,所以请对1e9+7取模。
第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20 t<=10^9
输出一行 2^n 个非负整数。
第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。
样例1:
3 2
1 2 3 4 5 6 7 8
样例2:
1 1
0 1
样例1:
58 62 66 70 74 78 82 86
样例2:
1 1
动态规划 FWT
根据题意一天到下一天的转移有两种:
1、从f[x]转移到f[x](累加自身)
2、从f[x]转移到f[x Xor 2^i]
转化一下视角,从上一天到这天的转移有两种:
1、从f[x Xor 2^0]到f[x]
2、从f[x Xor 2^i]到f[x]
显然,我们构造一个数组B,使得B只有0和2的幂次位为1,其他位为0,和原数组做异或卷积就能得到一次转移的结果。
加个快速幂就可以了。
需要输出优化。
博主不知道是有多困(chun),才能做到FWT的时候只变换原数组不变换B数组就直接乘,还如同星际选手一般地反复在其他地方找bug……
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mod=1e9+;
const int inv2=;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void write(int x){
if(x>)write(x/);
putchar(''+x%);
return;
}
int N,len;
int a[mxn],b[mxn];
void FWT(int *a){
for(int i=;i<N;i<<=){
int p=i<<;
for(int j=;j<N;j+=p){
for(int k=;k<i;k++){
int x=a[j+k],y=a[j+k+i];
a[j+k]=(x+y);if(a[j+k]>=mod)a[j+k]-=mod;
a[j+k+i]=(x-y);if(a[j+k+i]<)a[j+k+i]+=mod;
}
}
}
return;
}
void UTF(int *a){
for(int i=;i<N;i<<=){
int p=i<<;
for(int j=;j<N;j+=p){
for(int k=;k<i;k++){
int x=a[j+k],y=a[j+k+i];
a[j+k]=(x+y)*(LL)inv2%mod;
a[j+k+i]=(x-y)*(LL)inv2%mod;
}
}
}
return;
}
int ksm(int a,int k){
int res=;
while(k){
if(k&)res=(LL)res*a%mod;
a=(LL)a*a%mod;
k>>=;
}
return res;
}
int n,m,T;
int main(){
int i,j;
n=read();T=read();
m=<<n;
for(N=,len=;N<=m;N<<=)len++;
for(i=;i<m;i++)a[i]=read();
for(i=;i<m;i++){
if(i-(i&-i)==)b[i]=;
}
FWT(a);FWT(b);
for(i=;i<N;i++)a[i]=(LL)a[i]*ksm(b[i],T)%mod;
UTF(a);
for(i=;i<m;i++){
// printf("%d ",(a[i]+mod)%mod);
write((a[i]+mod)%mod);
putchar(' ');
}
return ;
}


而calc(u,v)定义为u,v按位异或的结果的二进制表示中数字1的个数。
每过一天,可以交易的城市之间就会交易一次。
请问 t 天后,每个城市会有多少货物。
答案可能会很大,所以请对1e9+7取模。
第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20 t<=10^9
输出一行 2^n 个非负整数。
第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。
样例1:
3 2
1 2 3 4 5 6 7 8
样例2:
1 1
0 1
样例1:
58 62 66 70 74 78 82 86
样例2:
1 1
51nod1773 A国的贸易的更多相关文章
- 51Nod1773 A国的贸易 多项式 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...
- 【51Nod1773】A国的贸易 解题报告
[51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...
- [51Nod 1773] A国的贸易
[51Nod 1773] A国的贸易 题目描述 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们有着神奇的贸易规则. ...
- 【51Nod1773】A国的贸易 FWT+快速幂
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
- 【51nod】1773 A国的贸易
题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...
- 51NOD 1773:A国的贸易——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773 参考1:FWT讲解 https://www.cnblogs.com ...
- NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- 【NOIP2009 T3】 最佳贸易 (双向SPFA)
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道 ...
- [NOIP2009] 提高组 洛谷P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
随机推荐
- Java多线程中的wait与notify
一.wait: 1. wait 是 object 类的方法, sleep 是 thread 类的方法. 2. 当前的正在我这个对象访问的线程 wait. 3. 当前的这个线程, 锁定在当前对象的这个线 ...
- 【php】提交的特殊字符会被自动转义
在处理mysql和GET.POST的数据时,常常要对数据的引号进行转义操作. PHP中有三个设置可以实现自动对’(单引号),”(双引号),\\(反斜线)和 NULL 字符转移. PHP称之为魔术引号, ...
- @Resource 注解的作用【和 @Autowired 的对比】
今天看到一段代码使用的是 @Resource 的注解,的确是第一次看到这个注解,百度一查才知道,原来和 @Autowired 效果一样,但也有一定的区别. 两个注解都可以用来注入 bean ,@Res ...
- 一张图看懂css的position里的relative和absolute的区别
position有以下属性:static.inherit.fixed.absolute.relative前三个好理解好区分:static:是默认状态,没有定位,元素出现在正常的流中(忽略 top, b ...
- 第187天:js基础---常见的Bom对象
BOM(Browser Object Mode)浏览器对象模型,是Javascript的重要组成部分.它提供了一系列对象用于与浏览器窗口进行交互,这些对象通常统称为BOM. 一张图了解一下先 1.wi ...
- BZOJ 2186 沙拉公主的困惑(预处理逆元+欧拉函数)
题意:求1-n!里与m!互质的数有多少?(m<=n<=1e6). 因为n!%m!=0,所以题目实际上求的是phi(m!)*n!/m!. 预处理出这些素数的逆元和阶乘的模即可. # incl ...
- Linux进入单用户模式(passwd root修改密码)
进入单用户模式——passwd root修改密码 1.在grub 页面输入a,进入修改内核模式 2.在内核的结尾“/”,输入空格,在输入single,回车 3.启动系统,进入单用户模式 4.Passw ...
- 使当前对象相对于上层DIV 水平、垂直居中定位
<!doctype html> <html> <head> <meta http-equiv="content-type" content ...
- 【CF113D】Museum
Portal --> cf113D Solution 额题意的话大概就是给一个无向图然后两个人给两个出发点,每个点每分钟有\(p[i]\)的概率停留,问这两个人在每个点相遇的概率是多少 如果说我 ...
- C# Emgu CV学习笔记二之图像读写的两种方法
http://blog.csdn.net/marvinhong/article/details/6800450 图像显示在控件loadPictureBox上 方法一 //读取图像001.jpg Int ...