将一系列给定数字顺序插入一个初始为空的小顶堆H[]。随后判断一系列相关命题是否为真。命题分下列几种:

  • “x is the root”:x是根结点;
  • “x and y are siblings”:x和y是兄弟结点;
  • “x is the parent of y”:x是y的父结点;
  • “x is a child of y”:x是y的一个子结点。

输入格式:

每组测试第1行包含2个正整数N(<= 1000)和M(<= 20),分别是插入元素的个数、以及需要判断的命题数。下一行给出区间[-10000, 10000]内的N个要被插入一个初始为空的小顶堆的整数。之后M行,每行给出一个命题。题目保证命题中的结点键值都是存在的。

输出格式:

对输入的每个命题,如果其为真,则在一行中输出“T”,否则输出“F”。

输入样例:

5 4

46 23 26 24 10

24 is the root

26 and 23 are siblings

46 is the parent of 23

23 is a child of 10

输出样例:

F

T

F

T

分析:

所谓小顶堆就是要求对于树中的每一个根节点来说,即小于他的左子树又小于他的右子树。

我们首先要将输入的序列构造成一个小顶堆,在这个构造的过程中应该注意的一点就是不能够在把树构造完成之后再进行调整,而是应该每当插入一个节点的时候就将树的结构调整好,这里应该注意调整的方法,因为如果你调整的方法不一样的话所构造出来的小顶堆的形式也是不一样的,这样对我们后期数据的判断会有很大的影响。

如果是树的形态构造好之后再进行调整的话,我们应该明确一点就是对于叶子节点来书是不需要进行调整的,所以开始调整的点的下标就应该是n=N/2。

void Tiao(int n)
{
int temp;
for(int i=n;i>0;i--)//从第一个节点开始往前调整
{
int t=i,op=0;
while( i*2<=N&&op==0)//有左孩子,并且这个节点没有达到平衡状态
{
if(i*2<=N)
if(a[i]>a[i*2])//有左节点且根节点小于左节点
{
t=2*i;
}
if(i*2+1<=N)
if(a[t]>a[i*2+1])//有右节点,且右节点小于左节点和根节点中的较小值
{
t=2*i+1;
}
if(t!=i)//相当于当前的树形式需要进行调整
{
temp=a[i];
a[i]=a[t];
a[t]=temp;
i=t;
}
else//不用调整的话,就不用再往下了,
op=1;
}
}
}

但是这种调整的方法并不适合我们的题目,题目要求我们每次插入一个节点之后就要进行调整

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
int N,M;
int a[10000];
void just(int n)
{
int i=n;
int temp;
if(i==1)//第一个相当于整个树的根节点,是不用进行调整的
return;
else
{
while(i!=1)//插入的当前结点要与他的根结点进行比较
{
if(a[i]<a[i/2])
{
temp=a[i];
a[i]=a[i/2];
a[i/2]=temp;
i=i/2;
}
else
break;
}
}
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=1; i<=N; i++)
{
scanf("%d",&a[i]);//每次加入一个节点都要进行调整
just(i);
}
getchar();
for(int kk=1; kk<=M; kk++)
{
char s[1000];
string ss;
gets(s);
ss=s;
int op;
op=ss.find("root");//find()方法是string类型下的方法 ,返回的是找到的第一个字符的下标
if(op!=-1)//相当于找到了
{
int mm;
sscanf(s,"%d",&mm);//输入流,把s的第一个整形数据给mm
if(a[1]==mm)//为根节点
printf("T\n");
else
printf("F\n");
}
else//没有找到
{
op=ss.find("siblings");
if(op!=-1)
{
int mm,nn,n,m;
char ch1[10];
sscanf(s,"%d %s %d",&nn,ch1,&mm);
for(int i=1; i<=N; i++)
{
if(a[i]==nn)
n=i;
if(a[i]==mm)
m=i;
}
if(n/2==m/2)
printf("T\n");
else
printf("F\n");
}
else
{
op=ss.find("parent");
if(op!=-1)
{
int mm,nn,m,n;
char ch1[10];
char ch2[10];
char ch3[10];
char ch4[10];
sscanf(s,"%d %s %s %s %s %d",&nn,ch1,ch2,ch3,ch4,&mm);
for(int i=1; i<=N; i++)
{
if(a[i]==nn)
n=i;
if(a[i]==mm)
m=i;
}
if(n==m/2)
printf("T\n");
else
printf("F\n");
}
else
{
op=ss.find("child");
if(op!=-1)
{
int mm,nn,n,m;
char ch1[10];
char ch2[10];
char ch3[10];
char ch4[10];
sscanf(s,"%d %s %s %s %s %d",&nn,ch1,ch2,ch3,ch4,&mm);
//这里虽然中间的字符串没有用到,也要获取出来,不然没法取到最后一个整形数据
for(int i=1; i<=N; i++)
{
if(a[i]==nn)
n=i;
if(a[i]==mm)
m=i;
}
if( n/2==m)
printf("T\n");
else
printf("F\n");
}
}
}
}
}
return 0;
}

天梯赛 L2-012 关于堆的判断 (二叉树)的更多相关文章

  1. PTA天梯赛L2

    L2-001 紧急救援 题意:就是给你一张n<500的图:让你求最短路径,最短路条数,以及路径: 做法,先用dijkstra求最短路,然后dfs找最短路条数,以及点权的最大值: 一般dfs不就可 ...

  2. pat 团体天梯赛 L2-012. 关于堆的判断

    L2-012. 关于堆的判断 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 将一系列给定数字顺序插入一个初始为空的小顶堆H[] ...

  3. PTA|团体程序设计天梯赛-练习题目题解锦集(C/C++)(持续更新中……)

    PTA|团体程序设计天梯赛-练习题目题解锦集(持续更新中) 实现语言:C/C++:      欢迎各位看官交流讨论.指导题解错误:或者分享更快的方法!! 题目链接:https://pintia.cn/ ...

  4. L1-049 天梯赛座位分配​​​​​​​

    L1-049 天梯赛座位分配 (20 分) 天梯赛每年有大量参赛队员,要保证同一所学校的所有队员都不能相邻,分配座位就成为一件比较麻烦的事情.为此我们制定如下策略:假设某赛场有 N 所学校参赛,第 i ...

  5. 第四届CCCC团体程序设计天梯赛 后记

    一不小心又翻车了,第二次痛失200分 1.开局7分钟A了L2-3,一看榜已经有七个大兄弟排在前面了,翻车 * 1 2.把L1-3 A了18分,留了两分准备抢顽强拼搏奖,最后五秒钟把题过了,万万没想到还 ...

  6. 团体程序设计天梯赛(CCCC) L3009 长城 方法证明

    团体程序设计天梯赛代码.体现代码技巧,比赛技巧.  https://github.com/congmingyige/cccc_code

  7. L1-049. 天梯赛座位分配

    天梯赛每年有大量参赛队员,要保证同一所学校的所有队员都不能相邻,分配座位就成为一件比较麻烦的事情.为此我们制定如下策略:假设某赛场有 N 所学校参赛,第 i 所学校有 M[i] 支队伍,每队 10 位 ...

  8. 天梯赛2016-L2

    L2-001. 紧急救援 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在 ...

  9. 『ACM C++』 PTA 天梯赛练习集L1 | 052-053

    今日刷题,水题水题 ------------------------------------------------L1-052------------------------------------ ...

  10. PTA L2-023 图着色问题-前向星建图 团体程序设计天梯赛-练习集

    L2-023 图着色问题 (25 分)   图着色问题是一个著名的NP完全问题.给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色? 但本题并不是要你解 ...

随机推荐

  1. tomcat下部署了多个项目启动报错java web error:Choose unique values for the 'webAppRootKey' context-param in your web.xml files

    应该是tomcat下部署了多个项目且都使用log4j. <!--如果不定义webAppRootKey参数,那么webAppRootKey就是缺省的"webapp.root". ...

  2. workstation vmware 制作vm模板

    [root@VM166136 ~]# cat copy_vmware.sh #!/bin/bash if [ $(id -u) -ne 0 ];then echo "Please use t ...

  3. 探究Android中通过继承ViewGroup自定义控件的原理

    原文地址:http://www.cnblogs.com/kross/p/3378395.html 今天断断续续的折腾了一下午到现在20:38,终于有点明白了.o(╯□╰)o 在Android开发中,我 ...

  4. 如何在java中实现跨线程的通讯

    一般而言,如果没有干预的话,线程在启动之后会一直运行到结束,但有时候我们又需要很多线程来共同完成一个任务,这就牵扯到线程间的通讯. 如何让两个线程先后执行?Thread.join方法 private ...

  5. UVALive - 4975_Casting Spells

    题意很简单,给你一个字符串,要求你求出一个最长的形似于w(wr)w(wr)的最长连续子串的长度.wr表示w的逆序串. 在这里大家很容易就能想到Manacher算法求回文串.没有错,就是这个. 算法的详 ...

  6. Python urlparse模块

    Python urlparse模块 urlparse 模块简介 urlparse模块用于把url解析为各个组件,支持file,ftp,http,https,imap,mailto,mms,news,n ...

  7. [AT2148] [arc063_c] Integers on a Tree

    题目链接 AtCoder:https://arc063.contest.atcoder.jp/tasks/arc063_c 洛谷:https://www.luogu.org/problemnew/sh ...

  8. MapReduce(二)常用三大组件

    mapreduce三大组件:Combiner\Sort\Partitioner 默认组件:排序,分区(不设置,系统有默认值) 一.mapreduce中的Combiner 1.什么是combiner C ...

  9. [ACM]Codeforces Round #534 (Div. 2)

    A. Splitting into digits Vasya has his favourite number n. He wants to split it to some non-zero dig ...

  10. Python3 字典 fromkeys()方法

     Python3 字典 描述 Python 字典 fromkeys() 函数用于创建一个新字典,以序列seq中元素做字典的键,value为字典所有键对应的初始值. 语法 fromkeys()方法语法: ...