hihocoder #1580 : Matrix (DP)
#1580 : Matrix
描述
Once upon a time, there was a little dog YK. One day, he went to an antique shop and was impressed by a beautiful picture. YK loved it very much.
However, YK did not have money to buy it. He begged the shopkeeper whether he could have it without spending money.
Fortunately, the shopkeeper enjoyed puzzle game. So he drew a n × m matrix on the paper with integer value ai,j in each cell. He wanted to find 4 numbers x, y, x2, and y2(x ≤ x2, y ≤ y2), so that the sum of values in the sub-matrix from (x, y) to (x2, y2) would be the largest.
To make it more interesting, the shopkeeper ordered YK to change exactly one cell's value into P, then to solve the puzzle game. (That means, YK must change one cell's value into P.)
If YK could come up with the correct answer, the shopkeeper would give the picture to YK as a prize.
YK needed your help to find the maximum sum among all possible choices.
输入
There are multiple test cases.
The first line of each case contains three integers n, m and P. (1 ≤ n, m ≤ 300, -1000 ≤ P ≤ 1000).
Then next n lines, each line contains m integers, which means ai,j (-1000 ≤ ai,j ≤ 1000).
输出
For each test, you should output the maximum sum.
- 样例输入
-
3 3 4
-100 4 4
4 -10 4
4 4 4
3 3 -1
-2 -2 -2
-2 -2 -2
-2 -2 -2 - 样例输出
-
24
-1
【题意】给你一个矩阵,要求你必须选择一个数把它换成p,然后再求一个最大子矩阵和。
【分析】考虑到普通求最大子矩阵的方法,先枚举上下行,然后对每一列求和再dp,如果我们要通过修改某个值
来获得更大的ans时,那么换掉的肯定是这个子矩阵中的最小值,那么我们枚举上下行时,dp[i][0/1]表示以第i
列结尾的矩阵1:已经修改过了/0:还没修改 获得的最大子矩阵值,然后分情况DP就行了。有一种情况就是当你的
最大值是取完所有矩阵而且不修改值时,当前最大值 不与ans更新,因为题目要求必须修改。#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 3e2+;;
const int M = ;
const int mod = ;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,t,cas;
int a[N][N],m,p,sum[N];
int mn[N],dp[N][],len[N];
bool flag;
int solve(){
dp[][]=dp[][]=;
int ret=-inf;len[]=;
for(int i=;i<=m;i++){
if(dp[i-][]>){
dp[i][]=dp[i-][]+sum[i];
len[i]=len[i-]+;
}
else {
dp[i][]=sum[i];
len[i]=;
}
if(i==){
dp[i][]=sum[]-mn[]+p;
}
else {
dp[i][]=max(sum[i]-mn[i]+p,dp[i-][]+sum[i]-mn[i]+p);
dp[i][]=max(dp[i][],dp[i-][]+sum[i]);
}
ret=max(ret,dp[i][]);
if(flag&&len[i]==m)continue;
ret=max(ret,dp[i][]);
}
return ret;
}
int main(){
while(~scanf("%d%d%d",&n,&m,&p)){
for(int i = ; i <= n; ++i){
for(int j = ; j <= m; ++j){
scanf("%d", &a[i][j]);
}
}
int ans = -inf;
for(int i = ; i <= n; ++i){
met(sum,);met(mn,inf);flag=false;
for(int j = i; j <=n; ++j){
for(int k = ; k <= m; ++k){
sum[k]+=a[j][k];
mn[k]=min(mn[k],a[j][k]);
}
if(i==&&j==n)flag=true;
ans=max(ans,solve());
}
}
printf("%d\n",ans);
}
return ;
}
hihocoder #1580 : Matrix (DP)的更多相关文章
- [CSP-S模拟测试]:matrix(DP)
题目描述 求出满足以下条件的$n\times m$的$01$矩阵个数:(1)第$i$行第$1~l_i$列恰好有$1$个$1$.(2)第$i$行第$r_i~m$列恰好有$1$个$1$.(3)每列至多有$ ...
- CSP模拟赛 Matrix(DP)
题面 求出满足以下条件的 n*m 的 01 矩阵个数: (1)第 i 行第 1~li 列恰好有 1 个 1. (2)第 i 行第 ri~m 列恰好有 1 个 1. (3)每列至多有 1 个 1. n, ...
- matrix(dp)
matrix Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Sub ...
- 牛客网多校训练第一场 B - Symmetric Matrix(dp)
链接: https://www.nowcoder.com/acm/contest/139/B 题意: 求满足以下条件的n*n矩阵A的数量模m:A(i,j) ∈ {0,1,2}, 1≤i,j≤n.A(i ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- Leetcode#867. Transpose Matrix(转置矩阵)
题目描述 给定一个矩阵 A, 返回 A 的转置矩阵. 矩阵的转置是指将矩阵的主对角线翻转,交换矩阵的行索引与列索引. 示例 1: 输入:[[1,2,3],[4,5,6],[7,8,9]] 输出:[[1 ...
随机推荐
- codevs 1492 探案第二部
1492 探案第二部 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 我们伟大的 Sherlock·Holmes 先生最近遇上了一件相当棘手的案子,随 ...
- HDU 1812 polya 大数
由于反射的存在,分奇偶讨论其置换的循环节数量,大数用JAVA就好了. import java.math.*; import java.util.*; public class Main{ public ...
- CF851 D 枚举 思维
给出n个数,你可以对每个数把它变为0,或者增加1,分别需要花费x, y.问把所有数的GCD变为不为1的最小花费是多少. n的范围5x1e5,a[i]的范围1e6. 开始想通过枚举最终gcd值,然后通过 ...
- LintCode 395: First Will Win 2
LintCode 395: First Will Win 2 题目描述 有 n 个不同价值的硬币排成一条线.两个参赛者轮流从左边依次拿走 1 或 2 个硬币,直到没有硬币为止.计算两个人分别拿到的硬币 ...
- C++面试中可能考察的基础知识(1)
1 C++中允许函数的嵌套调用,但不允许函数的嵌套定义 2 构建派生类对象时,先调用基类的构造函数,在调用成员对象的构造函数,最后调用派生类构造函数. 3 volatile关键字 volatile提醒 ...
- oozie与hive的简单案例
1.把oozie中自带的hive案例拷贝到 测试目录 /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6/oozie-apps下 2. 编辑 job.properties # # ...
- js布尔值转化
JavaScript 预期某个位置应该是布尔值,会将该位置上现有的值自动转为布尔值.转换规则是除了下面六个值被转为false,其他值都视为true. undefined null false 0 Na ...
- B - GuGuFishtion(莫比乌斯 欧拉函数 预处理mu函数的欧拉函数的模板)
题目链接:https://cn.vjudge.net/contest/270608#problem/B 题目大意:题目中说,就是对欧拉函数的重新定义的一种函数的求和. 证明方法: AC代码: #inc ...
- ubuntu之安装pycharm编辑器
pycharm是Java写的,运行需要Java环境. 安装java jdk sudo add-apt-repository ppa:webupd8team/java sudo apt-get upda ...
- Linux删除除了今天以外的文件
[背景] 开发到日志记录功能时,每天都会产生当天的一个日志,久而久之就会产生累积,想要查看的时候,tab键无法自动补全,还要自己额外输入. 比较麻烦. [命令] 经过查找和实验,找到了以下的方法: 1 ...