题目描述

破解了符文之语,小FF开启了通往地下的道路。当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案。而石门上方用古代文写着“神的殿堂”。小FF猜想里面应该就有王室的遗产了。但现在的问题是如何打开这扇门……

仔细研究后,他发现门上的图案大概是说:古代人认为只有智者才是最容易接近神明的。而最聪明的人往往通过一种仪式选拔出来。仪式大概是指,即将隐退的智者为他的候选人写下一串无序的数字,并让他们进行一种操作,即交换序列中相邻的两个元素。而用最少的交换次数使原序列变成不下降序列的人即是下一任智者。

小FF发现门上同样有着n个数字。于是他认为打开这扇门的秘诀就是找到让这个序列变成不下降序列所需要的最小次数。但小FF不会……只好又找到了你,并答应事成之后与你三七分……

输入输出格式

输入格式:

第一行为一个整数n,表示序列长度

第二行为n个整数,表示序列中每个元素。

输出格式:

一个整数ans,即最少操作次数。

输入输出样例

输入样例#1:

4
2 8 0 3
输出样例#1:

3
样例说明:开始序列为2 8 0 3,目标序列为0 2 3 8,可进行三次操作的目标序列:
1.Swap (8,0):2 0 8 3
2.Swap (2,0):0 2 8 3
3.Swap (8,3):0 2 3 8

说明

对于30%的数据1≤n≤10^4。

对于100%的数据1≤n≤5*10^5;

-maxlongint≤A[i]≤maxlongint。

以前只会写左闭右开区间的归并排序,今天终于写对闭区间排序辣!

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int t[mxn],a[mxn];
int n;
long long ans=;
void merge(int l,int r){
if(l>=r)return;
int mid=(l+r)>>;
merge(l,mid);
merge(mid+,r);
int p=l,q=mid+,i=l;
while(p<=mid || q<=r){
if(q>r || (p<=mid && a[p]<=a[q])){
t[i++]=a[p++];
}
else t[i++]=a[q++],ans+=mid-p+;
}
for(i=l;i<=r;i++)a[i]=t[i];
return;
}
int main(){
n=read();
int i,j;
for(i=;i<=n;i++)
a[i]=read();
merge(,n);
printf("%lld\n",ans);
return ;
}

洛谷P1774 最接近神的人的更多相关文章

  1. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  2. 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

    To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...

  3. 洛谷P1774 最接近神的人_NOI导刊2010提高(02) [2017年6月计划 线段树03]

    P1774 最接近神的人_NOI导刊2010提高(02) 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门 ...

  4. 洛谷 P1774 最接近神的人_NOI导刊2010提高(02)

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...

  5. 洛谷——P1774 最接近神的人_NOI导刊2010提高(02)

    https://www.luogu.org/problem/show?pid=1774 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古 ...

  6. 洛谷——P1966 火柴排队&&P1774 最接近神的人_NOI导刊2010提高(02)

    P1966 火柴排队 这题贪心显然,即将两序列中第k大的数的位置保持一致,证明略: 树状数组求逆序对啦 浅谈树状数组求逆序对及离散化的几种方式及应用 方法:从前向后每次将数插入到bit(树状数组)中, ...

  7. P1774 最接近神的人_NOI导刊2010提高(02)

    P1774 最接近神的人_NOI导刊2010提高(02) 关于此题为什么可以使用求逆序对的方法来做 假设一个数\(a_i\),且前\(i-1\)个数已经成为单调增的数列. 我们要从前\(a_1\)至\ ...

  8. P1774 最接近神的人_NOI导刊2010[树状数组 逆序对 离散化]

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...

  9. luogu P1774 最接近神的人_NOI导刊2010提高(02)

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...

随机推荐

  1. 杭电1008 Elevator

    #include <stdio.h> #include <stdlib.h> int main() { int n; int i,j; int num[101]; while( ...

  2. VMware Fusion 中如何复制centos/linux虚拟机

    今天想在mac本上,弄几个centos的虚拟机,尝试搭建hadoop的全分布环境.一台台虚拟机安装过去太麻烦了,想直接将现有的centos虚拟机复制几份完事,但是复制出来的虚拟机无法上网,折腾了一翻, ...

  3. unix环境高级编程基础知识之第二篇(3)

    看了unix环境高级编程第三章,把代码也都自己敲了一遍,另主要讲解了一些IO函数,read/write/fseek/fcntl:这里主要是c函数,比较容易,看多了就熟悉了.对fcntl函数讲解比较到位 ...

  4. docker 镜像导入导出

    导出(Export) Export命令用于持久化容器(不是镜像).所以,我们就需要通过以下方法得到容器ID: sudo docker ps -a 接着执行导出: sudo docker export ...

  5. (十)装饰器模式详解(与IO不解的情缘)

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. LZ到目前已经写了九个设计模 ...

  6. MVC————添加视图时没有模型可用

    我们有时想创建强类型视图,却发现下拉列表里面没有东西,这时不要慌,这是因为你没有编译造成的,编译一下就好了~

  7. iOS -- MJrefresh

    - (void)refresh { MJRefreshGifHeader *header = [MJRefreshGifHeader headerWithRefreshingTarget:self r ...

  8. 【凯子哥带你学Framework】Activity界面显示全解析

    前几天凯子哥写的Framework层的解析文章<Activity启动过程全解析>,反响还不错,这说明“写让大家都能看懂的Framework解析文章”的思想是基本正确的. 我个人觉得,深入分 ...

  9. 【转】ViewPager学习笔记(一)——懒加载

    在项目中ViewPager和Fragment接口框架已经是处处可见,但是在使用中,我们肯定不希望用户在当前页面时就在前后页面的数据,加入数据量很大,而用户又不愿意左右滑动浏览,那么这时候ViewPag ...

  10. 【转】解决eclipse无法设置NDK问题

    参考:http://jingyan.baidu.com/album/4d58d5413000a09dd4e9c0fe.html?picindex=1  到android sdk官网下载r23版本的ad ...