微分方程——包络和奇解
对某些微分方程,存在一条(也可能多条)特殊的积分曲线,它并不属于方程的积分曲线族。但是,在这条特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切。在几何学上,这条特殊的积分曲线称为上述积分曲线族的包络。在微分方程里,这条特殊的积分曲线所对应的解称为方程的奇解。
设单参数曲线族
\[\varPhi(x,y,c)=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (3.23)\]
其中$c$是参数,$\varPhi(x,y,c)$是$x,y,c$的连续可微函数。曲线族(3.23)的包络是指这样的曲线,它本身并不包含在曲线族(3.23)中,但过这曲线的每一点,有曲线族(3.23)中的一条曲线和它在这点相切。值得注意,一般的曲线族并不一定有包络,例如同心圆族,平行直线族都是没有包络的。
微分方程的某一个解称为奇解,如果在这个解的每一点上至少还有方程的另外一个解存在,也就是说奇解是这样的一个解,在它上面的每一点唯一性都不成立。或者说,奇解对应的曲线上每一点至少有方程的两条积分曲线通过。总之,奇解——首先它本身是解,特别之处在于该解对应的积分曲线的每一点都不满足唯一性。
从奇解的定义容易知道一阶微分方程的通解的包络(如果它存在的话)一定是奇解;反之,微分方程的奇解(若存在的话)也是微分方程的通解的包络。因而,为了求微分方程的奇解,可以先求出它的通解,然后求通解的包络。
微分方程——包络和奇解的更多相关文章
- 微分方程——基本概念和常微分方程的发展史
1.2 基本概念和常微分方程的发展史 自变量.未知函数均为实值的微分方程称为实值微分方程:未知函数取复值或变量及未知函数均取复值时称为复值微分方程.若无特别声明,以下均指实变量的实值微分方程. 1.2 ...
- Matlab slice方法和包络法绘制三维立体图
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节 ...
- MATLAB求解代数方程、微分方程的一些常用指令
MATLAB版本:R2015b 1.求解符号矩阵的行列式.逆.特征值.特征向量 A = sym('[a11, a12; a21, a22]');deltaA = det(A)invA = inv(A) ...
- 龙哥库塔法or欧拉法求解微分方程matlab实现
举例:分别用欧拉法和龙哥库塔法求解下面的微分方程 我们知道的欧拉法(Euler)"思想是用先前的差商近似代替倒数",直白一些的编程说法即:f(i+1)=f(i)+h*f(x,y)其 ...
- 千里积于跬步——流,向量场,和微分方程[转载]
在很多不同的科学领域里面,对于运动或者变化的描述和建模,都具有非常根本性的地位--我个人认为,在计算机视觉里面,这也是非常重要的. 什么是"流"? 在我接触过的各种数学体系中,对于 ...
- hdu 5761 Rowe Bo 微分方程
1010 Rower Bo 首先这个题微分方程强解显然是可以的,但是可以发现如果设参比较巧妙就能得到很方便的做法. 先分解v_1v1, 设船到原点的距离是rr,容易列出方程 \frac{ dr} ...
- Python在信号与系统(1)——Hilbert兑换,Hilbert在国家统计局的包络检测应用,FIR_LPF滤波器设计,格鲁吉亚也迫使高FM(PM)调制
谢谢董老师,董老师是个好老师. 心情久久不能平静,主要是高频这门课的分析方法实在是让我难以理解,公式也背只是,还是放放吧. 近期厌恶了Matlab臃肿的体积和频繁的读写对我的Mac的损害,所以学习了一 ...
- 本学期微分方程数值解课程总结(matlab代码)
最简单求解一个微分方程数值解得方法:Euler法 function [x,y]=Euler_method(dufun,span,h,x0,y0) %EuLer格式, %求解方程y'=dufun(x,y ...
- Riccati方程(微分方程)
形如:$$\frac{dy}{dx}=P(x)y^{2}+Q(x)y+R(x)$$ 其中P(x).Q(x).R(x)是连续可微函数 或形如 $$\frac{dy}{dx}=ay^{2}+\frac{k ...
随机推荐
- (35)odoo中widget
widget大全: many2many_tagsone2many_listselectionprogressbarselectionstatusbarhandlemonetarymail_thread ...
- JQ弹出框移动-插件分享~~~
<script src="js/jQuery8.3.js" type="text/javascript"></script> <s ...
- eclipse 本地项目提交到远程库以及从远程库中添加项目 ---git
本地项目提交到远程库 1.右击项目->team->share project 2.选择本地库 从远处库中的项目拉到本地 1.右击项目->import项目
- JSON.parse()和JSON.stringify()的区别
1. parse用于从一个字符串中解析出json对象,如 var str = '{"name":"huangxiaojian","age": ...
- FBI是如何破获“美国少女”裸照勒索案的
9月30日消息,据外国媒体报道,美国FBI昨日披露,“美国少女”(Miss Teen USA )卡西迪·伍尔芙(Cassidy Wolf )遭遇黑客通过电脑摄像头偷拍裸照兼敲诈勒索一案的嫌疑人已经被 ...
- eval解析非标准json
以前一直在用,但是不知道原理,惭愧啊,今天把自己想法加上. eval("{a:1}"); eval("{a:,b:1}"); 第一眼的感觉是都会得到一个对象,其 ...
- HTTP Referer 防外链
HTTP Referer是header的一部分,当浏览器向web服务器发送请求的时候,一般会带上Referer,告诉服务器我是从哪个页面链接过来的,服务器籍此可以获得一些信息用于处理. if (Req ...
- sqlite以及python的应用
有点乱,自己平时,遇到了就记下来,所以没整理. 数据库sqlite,以及Qt对数据库的操作 sql学习网址: sqlite官网:http://www.sqlite.org http://www.w3s ...
- c/c++面试题(5)(c++重要的概念详解)
1.C++面向对象的三大特征? 1)封装:将客观事物封装成抽象的类,并且设计者可以对类的成员进行访问控制权限控制. 这样一方面可以做到数据的隐藏,保护数据安全;另一方面,封装可以修改类的内部 实现而不 ...
- java SE 常用的排序算法
java程序员会用到的经典排序算法实现 常用的排序算法(以下代码包含的)有以下五类: A.插入排序(直接插入排序.希尔排序) B.交换排序(冒泡排序.快速排序) C.选择排序(直接选择排序.堆排序) ...