湘潭1247 Pair-Pair(树状数组)
分析:
给定n个二元组,求选出两个二元组(可以是同一个)组成一序列其LIS为1,2,3,4的方法数。
分别记为s1, s2, s3, s4
s1,s4对应的情形为a >= b >= c >= d, a < b < c < d,易求
长度为3时,先求得s3 + s4的值,分解为两种情况的和减去两种情况的并,min(a, b) < c < d, a < b < max(c, d),减去a < min(b, c) <= max(b, c) < d的方法数(使用二位树状数组,只考虑x[i] < y[i]),此时方法数为s3 + s4,减去s4得s3
总数为n * n,减去其他情况即为s2
若有更好的解法请指出!
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 100008;
int C[1018];
int x[N], y[N]; inline int lowbit(int x){
return x&-x;
}
void add(int x, int n){//将第x个数增加val,从1计数
for(int i=x;i<=n;i+=lowbit(i)){
C[i]++;
}
}
int sum(int x){//求1到x的和
int ret = 0;
for(int i=x;i>0;i-=lowbit(i)){
ret+=C[i];
}
return ret;
}
namespace bit{ int C[1008][1008];
inline int lowbit(int x){
return x&-x;
}
void add(int x,int y,int n){
for(int i=x;i<=n;i+=lowbit(i)){
for(int j=y;j<=n;j+=lowbit(j)) {
C[i][j]++;
}
}
} int sum(int x,int y){
int ret=0;
for(int i=x;i>0;i-=lowbit(i)) {
for(int j=y;j>0;j-=lowbit(j)) {
ret+=C[i][j];
}
}
return ret;
}
LL solve(int n){
LL ans = 0;
for(int i = 1; i <= n; i++){
if(x[i] < y[i]){
ans += sum(x[i] - 1, y[i] - 1);
}
}
return ans;
} } int main(){
int n, m;
while(~scanf("%d %d", &n, &m)){
memset(bit::C, 0, sizeof(bit::C));
int tot = 0;
for(int i = 1; i <= n; i++){
scanf("%d %d", &x[i], &y[i]);
if(x[i] < y[i]){
bit::add(x[i], y[i], m);
}
}
LL s1 = 0, s2 = 0, s3 = 0, s4 = 0;
//s4
memset(C, 0, sizeof(C));
for(int i = 1; i<= n; i++){
if(x[i] < y[i]){
add(y[i], m);
}
}
for(int i = 1; i <= n; i++){
if(x[i] < y[i]){
s4 += sum(x[i] - 1);
}
}
//s3 + s4
memset(C, 0, sizeof(C));
for(int i = 1; i <= n; i++){
add(min(x[i], y[i]), m);
}
for(int i = 1; i <= n; i++){
if(x[i] < y[i]){
s3 += sum(x[i] - 1);
}
} memset(C, 0, sizeof(C));
for(int i = 1; i <= n; i++){
add(max(x[i], y[i]), m);
}
for(int i = 1; i <= n; i++){
if(x[i] < y[i]){
s3 += n - sum(y[i]);
}
} s3 -= bit::solve(n);
s3 -= s4; //s1
memset(C, 0, sizeof(C));
tot = 0;
for(int i = 1; i <= n; i++){
if(x[i] >= y[i]){
tot++;
add(y[i], m);
}
}
for(int i = 1; i <= n; i++){
if(x[i] >= y[i]){
s1 += tot - sum(x[i] - 1);
}
}
s2 = (LL)n * n - s1 - s3 - s4;
printf("%I64d %I64d %I64d %I64d\n", s1, s2, s3, s4);
} return 0;
}
湘潭1247 Pair-Pair(树状数组)的更多相关文章
- 2016 大连网赛---Weak Pair(dfs+树状数组)
题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5877 Problem Description You are given a rooted ...
- HDU - 5877 Weak Pair (dfs+树状数组)
题目链接:Weak Pair 题意: 给出一颗有根树,如果有一对u,v,如果满足u是v的父节点且vec[u]×vec[v]<=k,则称这对结点是虚弱的,问这棵树中有几对虚弱的结点. 题解: 刚开 ...
- HDU 5877 Weak Pair(树状数组)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5877 [题目大意] 给出一棵带权有根树,询问有几对存在祖先关系的点对满足权值相乘小于等于k. [题 ...
- HDU 5877 Weak Pair(树状数组+dfs+离散化)
http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: 给出一棵树,每个顶点都有权值,现在要你找出满足要求的点对(u,v)数,u是v的祖先并且a[u]*a ...
- HDU 5877 Weak Pair DFS + 树状数组 + 其实不用离散化
http://acm.hdu.edu.cn/listproblem.php?vol=49 给定一颗树,然后对于每一个节点,找到它的任何一个祖先u,如果num[u] * num[v] <= k.则 ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- hdu_5877_Weak Pair(离散+DFS+树状数组)
题目链接:hdu_5877_Weak Pair 题意: 给你一棵树,让你找有多少对满足那两个条件的weak pair 题解: 有人用Treap,我不会,然后我用树状数组+离散来替代Treap,用DFS ...
- HDU 5877 2016大连网络赛 Weak Pair(树状数组,线段树,动态开点,启发式合并,可持久化线段树)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Tota ...
- hdu 5877 Weak Pair dfs序+树状数组+离散化
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Prob ...
- HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...
随机推荐
- WebClient 访问https
解决SSH证书问题: webClient.getOptions().setUseInsecureSSL(true);//解决ssh证书访问https的问题
- Python统计百分比及排序
source.txt: 60行 89 91 93 90 92 92 94 92 89 95 93 92 90 92 93 94 94 92 90 92 92 92 ... 统计各个值的百分比,并排序 ...
- JQuery发送Ajax请求出现 500 Internal Server Error
ajax返回,readyState=4,status=500,chrome f12提示,提示服务器内部错误 我采用 http://q.cnblogs.com/q/69745/的解决办法根本不行,也不是 ...
- JavaScript Window对象
1.Window对象的location属性引用的是Location对象,它表示该窗口中当前显示的文档的URL,并定义了方法来使窗口载入新的文档.Location对象的href属性是一个字符串,后者包含 ...
- mybaits in
mybatis中的in: <select id="getByInventoryIds" resultMap="beanMap"> SELECT * ...
- MPlayer-2016 最新版本
MPlayer 和 FFmpeg 最新版本 运行 Install.cmd 添加右键播放功能 mplayer\outformat.conf 配置视频分割命令参数 ; 往前0.05秒 大概10多个帧 ' ...
- ATS(App Transport Security)对HTTP协议屏蔽引起的问题
一.问题描述 在学习网络处理的过程,发现代码都没错,运行时会收到如下错误提示: App Transport Security has blocked a cleartext HTTP (http:// ...
- 表单中Readonly和Disabled的区别(转载)
Readonly和Disabled是用在表单中的两个属性,它们都能够做到使用户不能够更改表单域中的内容.但是它们之间有着微小的差别,总结如下: Readonly只针对input(text / pass ...
- 【编程题目】一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值★★ (自己没有做出来!!)
45.雅虎(运算.矩阵): 2.一个整数数组,长度为 n,将其分为 m 份,使各份的和相等,求 m 的最大值 比如{3,2,4,3,6} 可以分成 {3,2,4,3,6} m=1; {3,6}{2,4 ...
- CodeForces 407B Long Path (DP)
题目链接 题意:一共n+1个房间,一个人从1走到n+1,如果第奇数次走到房间i,会退回到房间Pi,如果偶数次走到房间i,则走到房间i+1,问走到n+1需要多少步,结果对1e9+7取模. 题解:设dp[ ...