转自:http://blog.csdn.net/augusdi/article/details/12529331

cuda 初学大全

1 硬件架构
CUDA编程中,习惯称CPU为Host,GPU为Device。

2 并行模型
Thread:并行基本单位
Block:相互合作的一组线程。可以彼此同步,快速交换数据,最多可以512个线程
Grid:一组Block,有共享全局内存
Kernel:在GPU上执行的程序,一个Kernel对应一个Grid

Block和Thread都有各自的ID,记作blockIdx(1D,2D),threadIdx(1D,2D,3D)
Block和Thread还有Dim,即blockDim与threadDim. 他们都有三个分量x,y,z
线程同步:void __syncthreads(); 可以同步一个Block内的所有线程

3 存储层次
per-thread register 1 cycle
per-thread local memory slow
per-block shared memory 1 cycle
per-grid global memory 500 cycle,not cached!!
constant and texture memories 500 cycle, but cached and read-only
分配内存:cudaMalloc,cudaFree,它们分配的是global memory
Hose-Device数据交换:cudaMemcpy

4 变量类型
__device__:   GPU的global memory空间,grid中所有线程可访问
__constant__:GPU的constant memory空间,grid中所有线程可访问
__shared__:   GPU上的thread block空间,block中所有线程可访问
local:                位于SM内,仅本thread可访问

在编程中,可以在变量名前面加上这些前缀以区分。

5 数据类型
内建矢量:int1,int2,int3,int4,float1,float2, float3,float4 ...
纹理类型:texture<Type, Dim, ReadMode>texRef;
内建dim3类型:定义grid和block的组织方法。
例如:
dim3 dimGrid(2, 2);
dim3 dimBlock(4, 2, 2);
kernelFoo<<<dimGrid, dimBlock>>>(argument);

6 CUDA函数定义

__device__:执行于Device,仅能从Device调用。
限制:不能用&取地址;不支持递归;不支持static variable;不支持可变长度参数
__global__ void: 执行于Device,仅能从Host调用。此类函数必须返回void
__host__:执行于Host,仅能从Host调用

在执行kernel函数时,必须提供execution configuration,即<<<....>>>的部分。

例如:
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

7 CUDA包含一些数学函数,如sin,pow等。每一个函数包含有两个版本,例如正弦函数sin,一个普通版本sin,另一个不精确但速度极快的__sin版本。

8 内置变量
gridDim, blockIdx, blockDim, threadIdx, wrapsize. 这些内置变量不允许赋值的

9 编写程序

目前CUDA仅能良好的支持C,在编写含有CUDA代码的程序时,首先要导入头文件cuda_runtime_api.h。文件名后缀为.cu,使用nvcc编译器编译。本来想在这里给出些源码的,但是源码教程,以后单独开一个文章在说吧。

这部分是一些枯燥的硬件知识的总结,但是对优化CUDA程序有着至关重要的作用,在后面的文章里,我将尽量结合实例来讲解这些东西

1 GPU硬件

i GPU一个最小单元称为Streaming Processor(SP),全流水线单事件无序微处理器,包含两个ALU和一个FPU,多组寄存器文件(register file,很多寄存器的组合),这个SP没有cache。事实上,现代GPU就是一组SP的array,即SPA。每一个SP执行一个thread

ii 多个SP组成Streaming Multiprocessor(SM)。每一个SM执行一个block。每个SM包含
8个SP;
2个special function unit(SFU):这里面有4个FPU可以进行超越函数和插值计算
MultiThreading Issue Unit:分发线程指令
具有指令和常量缓存。
包含shared memory

iii Texture Processor Cluster(TPC) :包含某些其他单元的一组SM

2 Single-Program Multiple-Data (SPMD)模型

i CPU以顺序结构执行代码,GPU以threads blocks组织并发执行的代码,即无数个threads同时执行

ii 回顾一下CUDA的概念:
一个kernel程序执行在一个grid of threads blocks之中
一个threads block是一批相互合作的threads:可以用过__syncthreads同步;通过shared memory共享变量,不同block的不能同步。

iii Threads block声明:
可以包含有1到512个并发线程,具有唯一的blockID,可以是1,2,3D
同一个block中的线程执行同一个程序,不同的操作数,可以同步,每个线程具有唯一的ID

3 线程硬件原理

i GPU通过Global block scheduler来调度block,根据硬件架构分配block到某一个SM。每个SM最多分配8个block,每个SM最多可接受768个thread(可以是一个block包含512个thread,也可以是3个block每个包含256个thread(3*256=768!))。同一个SM上面的block的尺寸必须相同。每个线程的调度与ID由该SM管理。

ii SM满负载工作效率最高!考虑某个Block,其尺寸可以为8*8,16*16,32*32
8*8:每个block有64个线程,由于每个SM最多处理768个线程,因此需要768/64=12个block。但是由于SM最多8个block,因此一个SM实际执行的线程为8*64=512个线程。
16*16:每个block有256个线程,SM可以同时接受三个block,3*256=768,满负载:)
32*32:每个block有1024个线程,SM无法处理!

iii Block是独立执行的,每个Block内的threads是可协同的。

iv 每个线程由SM中的一个SP执行。当然,由于SM中仅有8个SP,768个线程是以warp为单位执行的,每个warp包含32个线程,这是基于线程指令的流水线特性完成的。Warp是SM基本调度单位,实际上,一个Warp是一个32路SIMD指令。基本单位是half-warp。

注明by博主:一个SM有8个SP,处理的基本单位warp有32thread,因此有4个cycle才能执行完成。
如,SM满负载工作有768个线程,则共有768/32=24个warp,每一瞬时,只有一组warp在SM中执行。
Warp全部线程是执行同一个指令,每个指令需要4个clock cycle,通过复杂的机制执行。

v 一个thread的一生:
Grid在GPU上启动;block被分配到SM上;SM把线程组织为warp;SM调度执行warp;执行结束后释放资源;block继续被分配....

4 线程存储模型

i Register and local memory:线程私有,对程序员透明。
每个SM中有8192个register,分配给某些block,block内部的thread只能使用分配的寄存器。线程数多,每个线程使用的寄存器就少了。

ii shared memory:block内共享,动态分配。如__shared__ float region[N]。
shared memory 存储器是被划分为16个小单元,与half-warp长度相同,称为bank,每个bank可以提供自己的地址服务。连续的32位word映射到连续的bank。
对同一bank的同时访问称为bank conflict。尽量减少这种情形。

iii Global memory:没有缓存!容易称为性能瓶颈,是优化的关键!
一个half-warp里面的16个线程对global memory的访问可以被coalesce成整块内存的访问,如果:
数据长度为4,8或16bytes;地址连续;起始地址对齐;第N个线程访问第N个数据。
Coalesce可以大大提升性能

uncoalesced

Coalesced方法:如果所有线程读取同一地址,不妨使用constant memory;如果为不规则读取可以使用texture内存
如果使用了某种结构体,其大小不是4 8 16的倍数,可以通过__align(X)强制对齐,X=4 8 16

cuda 初学大全的更多相关文章

  1. opencv3.3 CUDA 初学实例

    //swap.cu #include "cuda_runtime.h" #include "device_launch_parameters.h" #inclu ...

  2. Python 资源大全中文版

    Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python 资源列 ...

  3. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  4. [转]C/C++ 程序员必须收藏的资源大全

    from: https://github.com/jobbole/awesome-cpp-cn C++ 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome – XXX 系列 ...

  5. Python资源大全

    The Python Tutorial (Python 2.7.11) 的中文翻译版本.Python Tutorial 为初学 Python 必备官方教程,本教程适用于 Python 2.7.X 系列 ...

  6. [转载]Python 资源大全

    原文链接:Python 资源大全 环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具. pyenv – 简单的 Python 版本管理工具. Vex  ...

  7. CUDA安装及配置:Windows 7 64位环境

    最近又有新的项目要做了,这次是关于CUDA---多核高性能计算的问题,所以最近一直在学习CUDA的编程问题,昨天安装软件完毕,运行第一个程序的时候还是遇到很多问题.所以这里给大家一起分享一下, 有和我 ...

  8. Python 库大全

    作者:Lingfeng Ai链接:http://www.zhihu.com/question/24590883/answer/92420471来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非 ...

  9. WINDOWS批处理命令使用大全

    来源:http://www.942dn.com就是爱电脑网 WINDOWS批处理命令使用大全 批处理,也称为批处理脚本,英文译为BATCH,批处理文件后缀BAT就取的前三个字母.它的构成没有固定格式, ...

随机推荐

  1. OS X Framework Library not loaded: 'Image not found'的解决办法

    参考:OS X Framework Library not loaded: 'Image not found' 1.首先将相应的framework手动复制到/System/Library/Framew ...

  2. 第六天 做的app不会改变什么

    app包括资源和功能,做完之后没有改变什么

  3. centos 安装mysql

    wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm rpm -ivh mysql-community-rele ...

  4. CSS伪选择器的使用-遁地龙卷风

    分为伪元素选择器和伪类选择器两种,前者两个冒号,后者一个冒号,但是浏览器都看做一个冒号 1.a.::first-line 逐层匹配,直到有文本元素且结束改行为止 设置css属性word-break:b ...

  5. Effective Java 学习笔记之创建和销毁对象

    一.考虑用静态工厂方法代替构造器 1.此处的静态工厂方法是指返回指为类的对象的静态方法,而不是设计模式中的静态工厂方法. 2.静态工厂方法的优势有: a.使用不同的方法名称可显著地表明两个静态工厂方法 ...

  6. [POJ2892]Tunnel Warfare

    [POJ2892]Tunnel Warfare 试题描述 During the War of Resistance Against Japan, tunnel warfare was carried ...

  7. qmake的使用

    [TOC] 本文由乌合之众 lym瞎编,欢迎转载 blog.cnblogs.net/oloroso 本文由乌合之众 lym瞎编,欢迎转载 my.oschina.net/oloroso *** 还是先说 ...

  8. [CQOI2011]动态逆序对

    (又是一道树套树……自己真是玩疯了……) (题意略) 从网上也看过题解,好像解法很多……比如CDQ+树状数组,树状数组套主席树,树状数组套平衡树……我用的是树状数组套splay. (我会说是因为我不会 ...

  9. Hibernate中的GetCurrentSession()方法

    从3.0.1版本开 始,Hibernate增加了SessionFactory.getCurrentSession()方法. 采用getCurrentSession()创建的session在commit ...

  10. Bootstrap 3学习笔记 -栅格

    这是Bootstrap中非常基础一张表,但其实有这么容易掌握和理解吗? (1).对于col-md的div, 默认是垂直排列, 当视口(屏幕或浏览器的宽度)>992px,col-md-1的div块 ...