主讲人 张巍

(新浪微博: @张巍_ISCAS

软件所-张巍<zh3f@qq.com> 19:01:27 
我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模:

例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模:

但这样并不能完全解决问题 :1、高阶马尔科夫模型参数太多;2、数据间的相关性仍然受阶数限制。一个好的解决方法,是引入一层隐变量,建立如下的模型:

这里我们假设隐变量之间服从一阶马尔科夫链,观测变量由其对应的隐变量生成。从上图可以看出,隐变量是一阶的,但是观测变量之间是全相关的,今天我们主要讨论的就是上图中的模型。如果隐变量是离散的,我们称之为Hidden Markov Models;如果是连续的,我们称之为: Linear Dynamical Systems。现在我们先来看一下HMM ,从图中可以看出,要完成建模,我们需要指定一下几个分布:
1、转移概率:

2、马尔科夫链的初始概率:

3、生成观测变量的概率(emission probabilities):

对于HMM, 这里1和2我们已经假设成了离散分布,由隐变量Zn生成观测数据可以用混合高斯模型或者神经网络,书上的Zn是一个k维的布尔变量,由此再看隐变量转移概率公式、观测数据的生成公式就容易理解了。模型建好了,我们接下来主要讨论下面三个问题:
1、学习问题:就是学习模型中的参数;
2、预测问题:即,给定当前序列预测下一个观测变量;
3、解码问题:即p(Z|X),给定观测变量求隐变量,例如语音识别;

游侠(419504839) 19:24:21 
什么是解码问题?
软件所-张巍<zh3f@qq.com> 19:25:18 
例如观测到了一段语音,要求识别其对应的句子。@游侠 我前面没怎么举例子,不知道这样说清楚没?
游侠(419504839) 19:27:20 
这个和一般说的"推断"一样不
软件所-张巍<zh3f@qq.com> 19:28:27 
这个也可以叫推断,只是推断是个比较一般的词汇。
我们来看一下HMM有多少参数要学,对应于刚才说到的三个分布,我们也有三组参数要学。
球猫(250992259) 19:30:46 
其实就是假设东西是一个马尔科夫模型生成的。。然后把参数用某种方法弄出来,最后根据模型的输出来给答案……是这样吧?

软件所-张巍<zh3f@qq.com> 19:32:45 
@球猫 对,都是这个思路,先把参数学出来,然后就可以做任何想要的推断了,在这里所谓的解码问题只是大家比较关心。
软件所-张巍<zh3f@qq.com> 19:32:51 
好,继续,我们先来看1、学习问题。这里我们用EM算法来学习HMM的参数:
1、是转移概率对应的转移矩阵;
2、初始概率对应的离散分布参数;
3、观测变量对应的分布参数(这里暂不指定)。
用EM我们要做的就是:
E步里根据当前参数估计隐变量的后验:


M步里最大化下面的期望:

先来看M步,这里相对简单一点,整个模型的全概率展开为:

把13.10代入13.12,我们会发现计算时需要下面两个式子:

为了方便,我们就定义:

这样我们在E步就主要求出这两个式子就行了,当然这也就意味着求出了整个后验,利用这两个式子,13.12可以化为:

这个时候就可以用一些通用方法,例如Lagrange来求解了,结果也很简单:

对于观测变量的分布参数,与其具体分布形式相关,如果是高斯:,对应的最优解为:

如果是离散:对应的最优解为:

好,M步就这样, 现在来看E步,也是HMM比较核心的地方。刚才我们看到,E步需要求的是:
由马尔科夫的性质,我们可以推出:

其中:


接下来我们就建立的递推公式

其中:

这样我们从开始,可以递推出所有的,对于,也进行类似的推导:


从上式可以看到是一个逆推过程,所以我们需要初始值,定义13.35并没有明确的定义:

因为z_N后没有观测数据,不过我们可以从,得出:
 
这样就等于1,现在我们可以方便的求出所有的了,利用13.13也就可以求出所有的。类似的,我们可以求出

这样在M步里求解所需要的分布就都求出来了,也就可以用EM来学习HMM的参数了,这里式子比较多,大家自己推一下会比较好理解。

第一个学习问题就这样了,接下来是预测问题,预测问题可以直接推导:

现在就剩最后一个解码问题,也就是argmax_Z{p(Z|X)},刚才我们在E步已经求出了:

但是现在的问题要复杂一点,因为我们要求概率最大的隐变量序列,用13.13可以求出单个隐变量,但是他们连在一起形成的整个序列可能概率很小,这个问题可以归结为一个动态规划:

我们把HMM化成如上图的样子,最大化后验等价于最大化全概率,对于上图中的边,我们赋值为:
log(
初始节点赋值为:
log(*p(x_1|z_1))
其余节点赋值为:
log()
这样任何一个序列Z,其全概率等于exp(Z对应路径上节点和边的值求和),这样,解码问题就转化为一个最长路径问题,用动态规划可以直接求解。大家看这里有没有问题,HMM的主要内容就是这些

接下来的Linear Dynamical Systems 其实和HMM大同小异,只是把离散分布换成了高斯,然后就是第二章公式的反复应用,都是细节问题,就不在这里讲了,大家看看有问题我们可以讨论。这一章还是式子主导的,略过了不少式子,大家推的时候有问题我们可以随时讨论。

天涯游(872352128) 21:09:21 
我对hmm 的理解,觉得这麻烦的是概率的理解的了,概率分解才是hmm的核心,当然了还有动态规划了。概率分解其实是实验事件的分解,如前向 和后向了,还有就是EM算法了。

PRML读书会讲稿PDF版本以及更多资源下载地址:http://vdisk.weibo.com/u/1841149974

PRML读书会第十三章 Sequential Data(Hidden Markov Models,HMM)的更多相关文章

  1. Hidden Markov Models(HMM) 初理解

    1. 一个简单例子

  2. 机器学习 Hidden Markov Models 2

    Hidden Markov Models 下面我们给出Hidden Markov Models(HMM)的定义,一个HMM包含以下几个要素: ∏=(πi)表示初始状态的向量.A={aij}状态转换矩阵 ...

  3. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  4. [综]隐马尔可夫模型Hidden Markov Model (HMM)

    http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...

  5. 理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM)

    理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog. ...

  6. 机器学习 Hidden Markov Models 1

    Introduction 通常,我们对发生在时间域上的事件希望可以找到合适的模式来描述.考虑下面一个简单的例子,比如有人利用海草来预测天气,民谣告诉我们说,湿漉漉的海草意味着会下雨,而干燥的海草意味着 ...

  7. 隐马尔科夫模型(Hidden Markov Models) 系列之三

    转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...

  8. PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分 ...

  9. PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)

    主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...

随机推荐

  1. request,session,application

    JSP 的3个内置对象request,session,application,其实都有一个作用域,这些对象内部有一个Map成员用于存放数据,比如session对象的setAttribute(key,v ...

  2. 微信企业号开发之-如何获取secret 序列号

    最近有项目基于微信企业号开发,简单记录下如何查看企业号secert 工具/原料 微信企业号   方法/步骤  用管理员的帐号登录后,选择[设置]-[权限管理]进入管理组设置界面      在左边点击[ ...

  3. 编译hadoop2.6.0

    具体情况比较曲折:hadoop2.6.0编译不过 错误如下: 这个kms模块始终编译不过,最后得出结论国内的aliyun maven仓库有问题, 在编译hadoop2.2.0 可以通过,因为这个版本的 ...

  4. mysql 5.5多实例部署【图解】

    mysql5.5数据库多实例部署,我们可以分以下几个步骤来完成. 1. mysql多实例的原理 2. mysql多实例的特点 3. mysql多实例应用场景 4. mysql5.5多实例部署方法 一. ...

  5. SQL动态列查询

    数据库中为了实现表格数据的自由设置,我们经常设计纵表,或者列定义的表(如下KeyValue),定义一个列超级多的表中每个字段的意义. 但是在设计时简单的东西却很容易被人们忘记,如下一个简单但是很松散的 ...

  6. SQL Server调优系列基础篇

    前言 关于SQL Server调优系列是一个庞大的内容体系,非一言两语能够分析清楚,本篇先就在SQL 调优中所最常用的查询计划进行解析,力图做好基础的掌握,夯实基本功!而后再谈谈整体的语句调优. 通过 ...

  7. 工作中常用的Linux命令:crontab命令

    本文链接:http://www.cnblogs.com/MartinChentf/p/6060252.html (转载请注明出处) crontab是一个用来设置.删除或显示供守护进程cron执行的定时 ...

  8. 奇 arch/i386/kernel/head.o(.text+0x3e): undefined reference to `stack_start'

    当linux/linkage.h 是dos格式保存,即以\r\n作行结束,gcc-2.96/redhat-7.3报错

  9. Canvas事件处理

    鼠标事件 canvas.onmousedown = function(e ) {//React to the mouse down event }; canvas.addEventListener(' ...

  10. Virtualbox配置双网卡

    hadoop内部的虚拟机群,使用Host-Only 因为我之前一直是把三台虚机配置成桥接网络,可以同时上网又可以互通,但有一段时间,网络一直不通畅,造成hadoop核心进程一直关闭. 最后为了稳定起见 ...