分治法求2n个数的中位数
问题:设X[0:n-1]和Y[0:n-1]为两个数组,每个数组中含有n个已排好序的数。试设计一个O(logn)时间的分治算法,找出X和Y的2n个数的中位数
思想:
对于数组X[0:n-1]和Y[0:n-1]先分别找出X和Y的中位数xa和yb。求中位数的算法是这样的,若n是奇数,即数组X和Y中各有奇数个数字,因为X和Y已经排好序了,所以去数组下标为(n-1)/2处的数即为中位数。若n是偶数,则取(n-1)/2向下取整和向上取整这两个位置的数的平均值作为中位数。
两者进行比较,
(1)若xa=yb则xa或者xb即为整个2n个数中的中位数,算法结束。因为:若每个数组中数字的个数是偶数个,则X中小于中位数的有n/2个,大于中位数的有n/2个,同理Y也是如此,所以在整个2n数组中比xa=yb小的共有n个数,比n大的共有n个数,即为中位数。若每个数组中数字的个数是奇数,则X中小于xa的有(n-1)/2个,大于xa的也有(n-1)/2个,同理Y中也是如此,所以对于xa或者是yb则整个2n数组中小于和大于他们的数分别为(n-1)个,取这两个数的平均值(xa+yb)/2=xa=yb即为中位数.
(2) 若xa>yb,则说明整个2n个数的的中位数一定在X数组的前一半和Y数组的后一半中,因为:若中位数在X数组的中位数之后,则比它小的数共有X数组中大于n/2个数以及Y数组中大于n/2个数总计超过了n个数,不符合中位数的定义。若中位数是在Y数组的前一半之中,则比它大的数字共有Y中包括中位数在内的后半部数加上X数组包括中位数在内的后半部,这样也超过了n个数,不符合中位数的定义。
(3) 若xa<yb,则同上理由,整个2n的数的中位数应该在X数组的后一半和Y数组的前一半中。
确定中位数所在的数组范围后,递归调用求中位数算法对这个范围的数组求中位数重复上述过程,直至:
1.出现xa=yb情况,找到了中位数算法结束。
2.数组分割至左右两部数组只有一个数字的情况,求其平均值即为中位数
代码:
/*
思路:求两有序数组x和y的第k个数,思路如下:
若k为1,则返回两数组的最小值
取x的第i个数x0,取y的第(k-i)个数y0
若x0=y0,则x0即为所求
若x0<y0,则丢弃x的前i个数,k=k-i,递归
若x0>y0,则丢弃y的前(k-i)个数,k=i,递归
*/
import java.util.Scanner;
import java.util.List;
import java.util.ArrayList; public class Solution{ public int findOneSideMedian(int a[]){
int mid;
int length=a.length;
//if(a[])数组长度a.length
if((length&0x01)==0){//判断子数组的长度是奇数还是偶数
mid=(a[length/2]+a[length/2-1])/2;
}else{
mid=a[length/2];
}
return mid;
} public double findMedian(int x[],int y[] int n){
if(n==0){
break;
}
int mid_x=findOneSideMedian(x);
int mid_y=findOneSideMedian(y);
if(n==1){
return (mid_x+mid_y)/2;
}
if(mid_x==mid_y){
return mid_x;
}else if(mid_x>mid_y){
int[] x2=Arrays.copyOfRange(x,0,n/2);
int[] y2=Arrays.copyOfRange(y,Math.ceil(n/2),n);
n=n/2;
findMedian(x2,y2,n);
}else if(mid_x<mid_y){
int[] x2=Arrays.copyOfRange(x,Math.ceil(n/2),n);
int[] y2=Arrays.copyOfRange(y,0,n/2);
n=n/2;
findMedian(x2,y2,n);
}
}
}
分治法求2n个数的中位数的更多相关文章
- 分治法求一个N个元素数组的逆序数
背景 逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时, ...
- 《github一天一道算法题》:分治法求数组最大连续子序列和
看书.思考.写代码. /*************************************** * copyright@hustyangju * blog: http://blog.csdn. ...
- 算法笔记_065:分治法求逆序对(Java)
目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 分治法(归并排序) 1 问题描述 给定一个随机数数组,求取这个数组中的逆序对总个数.要求时间效率尽可能高. 那么,何为逆序对? 引用自百度 ...
- 使用分治法求X的N次方,时间效率为lgN
最近在看MIT的算法公开课,讲到分治法的求X的N次方时,只提供了数学思想,于是自己把代码写了下,虽然很简单,还是想动手写一写. int powerN(int x,int n){ if(n==0){ r ...
- hdu 1007 Quoit Design(分治法求最近点对)
大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...
- 分治法求解最近对问题(c++)
#include"stdafx.h" #include<iostream> #include<cmath> #define TRUE 1 #define F ...
- Leetcode之分治法专题-169. 求众数(Majority Element)
Leetcode之分治法专题-169. 求众数(Majority Element) 给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是 ...
- 分治法(一)(zt)
这篇文章将讨论: 1) 分治策略的思想和理论 2) 几个分治策略的例子:合并排序,快速排序,折半查找,二叉遍历树及其相关特性. 说明:这几个例子在前面都写过了,这里又拿出来,从算法设计的策略的角度把它 ...
- (逆序对 分治法)P1908 逆序对 洛谷
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定 ...
随机推荐
- jquery实时监测手机号是否符合规则,并根据手机号检测结果将提交按钮设为不同状态
功能: 输入手机号,实时判断手机号输入的是否符合规则: 如果不合规则,则提交按钮为禁用状态,手机号信息不可提交,按钮显示灰色背景: 如果符合规则,则可提交所输入的手机号信息,并将按钮背景设成红色. 代 ...
- postfix config
smtp auth success,other not sure service saslauthd start [root@localhost ~]# cat /etc/sysconfig/sas ...
- 纯CSS实现帅气的SVG路径描边动画效果(转载)
本文转载自: 纯CSS实现帅气的SVG路径描边动画效果
- Magento 自定义一个搜索功能
最近工作中有一个需求是需要做一个搜索的功能,但是因为需要定制一些外观,所以就不用传统的方法来继承基类GRID.实现这个需求的核心其实就是下面这个方法. $this->getLayout()-&g ...
- 【转】PowerShell入门(六):远程操作
转至:http://www.cnblogs.com/ceachy/archive/2013/02/20/PowerShell_Remoting.html PowerShell远程操作是远程管理的基础, ...
- windows进程详解
1:系统必要进程system process 进程文件: [system process] or [system process]进程名称: Windows内存处理系统进程描述: Windows ...
- jQuery 选择器 (基础恶补之二)
返回 CSS 属性 如需返回指定的 CSS 属性的值,请使用如下语法: css("propertyname"); 下面的例子将返回首个匹配元素的 background-color ...
- session失效后,登录页面嵌入iframe框架
在登录页面的onload方法中加入以下代码解决: //防止登录页面嵌入iframe框架 if (top.location != self.location){ top.location=self.lo ...
- Centos6版本升级
1.查看当前版本 [root@IDC-D-1699 docker]# cat /etc/issue CentOS release 6.8 (Final) Kernel \r on an \m 2.升级 ...
- noi 8787 数的划分
题目链接:http://noi.openjudge.cn/ch0206/8787/ 将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序). 简直跟分苹果一模一样. #include < ...