CF449B CF450D

http://codeforces.com/contest/450/problem/D

http://codeforces.com/contest/449/problem/B

Codeforces Round #257 (Div. 2) D

Codeforces Round #257 (Div. 1) B

D. Jzzhu and Cities
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1 is the capital of A. Also there are m roads connecting the cities. One can go from city ui to vi (and vise versa) using the i-th road, the length of this road is xi. Finally, there are k train routes in the country. One can use the i-th train route to go from capital of the country to city si (and vise versa), the length of this route is yi.

Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.

Input

The first line contains three integers n, m, k (2 ≤ n ≤ 105; 1 ≤ m ≤ 3·105; 1 ≤ k ≤ 105).

Each of the next m lines contains three integers ui, vi, xi (1 ≤ ui, vi ≤ nui ≠ vi; 1 ≤ xi ≤ 109).

Each of the next k lines contains two integers si and yi (2 ≤ si ≤ n; 1 ≤ yi ≤ 109).

It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.

Output

Output a single integer representing the maximum number of the train routes which can be closed.

Sample test(s)
Input
5 5 3
1 2 1
2 3 2
1 3 3
3 4 4
1 5 5
3 5
4 5
5 5
Output
2
Input
2 2 3
1 2 2
2 1 3
2 1
2 2
2 3
Output
2

题意:有n个城市,1是首都。给出m条有权无向边(公路),k条由1连接到某个城市的有权无向边(铁路),求在保持首都到各个城市的最短路长度不变的情况下,最多能炸掉多少条铁路。

题解:首都到达同一个城市的铁路只保留最短的,然后进行最短路并统计某个顶点最短路的更新次数,最后只保留长度等于最短路且更新次数为1(只有这一种最短路)的铁路。

设一个c[i]记录i点的更新次数,初始c[首都]为1,其他为0。更新的时候dij和spfa不是小于才更新嘛,小于的时候就c[新点]=c[当前点],等于的时候就c[新点]+=c[当前点],这样c[i]就是最短路的更新次数(最短路的方案数)。

注意CF可是大家都能出数据的,有人出了个卡SPFA的数据,我都吓尿了。可以给SPFA加SLF优化过。有人用优先队列过的,因为还好没人出卡优先队列SPFA的数据…

代码:

 //#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) prllf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back const ll INF=1LL<<; const int maxn=;
const int maxm=;
struct edge {
int v,next;
ll w;
} e[maxm];///边表
int head[maxn],en; void add(int x,int y,ll z) {
e[en].w=z;
e[en].v=y;
e[en].next=head[x];
head[x]=en++;
} int n,m,k;
ll g[maxn];
bool f[maxn];///入队标志
int b[maxn], c[maxn];
ll d[maxn];///b为循环队列,d为起点到各点的最短路长度
void spfa() { ///0~n-1,共n个点,起点为st
int i,k;
int st=, l=, r=;
memset(f,,sizeof(f));
memset(b,,sizeof(b));
for(i=; i<n; i++)
d[i]=INF;
b[]=st;
f[st]=;
d[st]=;
c[st]=;
while(l!=r) {
k=b[l++];
l%=n;
for(i=head[k]; i!=-; i=e[i].next)
if (d[k]+e[i].w < d[e[i].v]) {
d[e[i].v]=d[k] + e[i].w;
c[e[i].v]=c[k];
if (!f[e[i].v]) {
if(d[e[i].v]>d[b[l]]) {///SLF优化,这题卡没优化的SPFA……
b[r++]=e[i].v;
r%=n;
} else {
l--;
if(l==-)l=n-;
b[l]=e[i].v;
}
f[e[i].v]=;
}
} else if(d[k]+e[i].w == d[e[i].v])
c[e[i].v]+=c[k];
f[k]=;
}
} void init() {
memset(head,-,sizeof(head));
en=;
} int main() {
int i,x,y;
ll z;
while(scanf("%d%d%d",&n,&m,&k)!=EOF) {
init();
REP(i,m) {
scanf("%d%d%I64d",&x,&y,&z);
x--;
y--;
add(x,y,z);
add(y,x,z);
} REP(i,n) g[i]=INF; REP(i,k) {
scanf("%d%I64d",&x,&z);
x--;
if(z<g[x]) g[x]=z;
} REP(i,n)
if(g[i]!=INF) {
add(,i,g[i]);
add(i,,g[i]);
} memset(c,,sizeof(c));
spfa(); int remain=;
REP(i,n)
if(g[i]!=INF && c[i]== && d[i]==g[i])
remain++;
printf("%d\n",k-remain);
}
return ;
}

CF449B Jzzhu and Cities (最短路)的更多相关文章

  1. CF449B Jzzhu and Cities 迪杰斯特拉最短路算法

    CF449B Jzzhu and Cities 其实这一道题并不是很难,只是一个最短路而已,请继续看我的题解吧~(^▽^) AC代码: #include<bits/stdc++.h> #d ...

  2. Codeforces Round #257 (Div. 2) D题:Jzzhu and Cities 删特殊边的最短路

    D. Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces C. Jzzhu and Cities(dijkstra最短路)

    题目描述: Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  4. Codeforces 450D:Jzzhu and Cities(最短路,dijkstra)

    D. Jzzhu and Cities time limit per test: 2 seconds memory limit per test: 256 megabytes input: stand ...

  5. Codeforces 449 B. Jzzhu and Cities

    堆优化dijkstra,假设哪条铁路能够被更新,就把相应铁路删除. B. Jzzhu and Cities time limit per test 2 seconds memory limit per ...

  6. D. Jzzhu and Cities

    Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1  ...

  7. codeforces 449B Jzzhu and Cities (Dij+堆优化)

    输入一个无向图<V,E>    V<=1e5, E<=3e5 现在另外给k条边(u=1,v=s[k],w=y[k]) 问在不影响从结点1出发到所有结点的最短路的前提下,最多可以 ...

  8. Codeforces Round #257(Div.2) D Jzzhu and Cities --SPFA

    题意:n个城市,中间有m条道路(双向),再给出k条铁路,铁路直接从点1到点v,现在要拆掉一些铁路,在保证不影响每个点的最短距离(距离1)不变的情况下,问最多能删除多少条铁路 分析:先求一次最短路,铁路 ...

  9. Jzzhu and Cities

    CF #257 div2D:http://codeforces.com/contest/450/problem/D 题意:给你n个城市,m条无向有权边.另外还有k条边,每条边从起到到i.求可以删除这k ...

随机推荐

  1. 【bzoj1911】 Apio2010—特别行动队

    http://www.lydsy.com/JudgeOnline/problem.php?id=1911 (题目链接) 题意 给出一个序列,将序列分成连续的几段,每段的价值为a*s*s+b*s+c,其 ...

  2. poj2187 旋转卡(qia)壳(ke)

    题意:求凸包的直径 关于对踵点对.旋转卡壳算法的介绍可以参考这里: http://www.cnblogs.com/Booble/archive/2011/04/03/2004865.html http ...

  3. PCRE Perl Compatible Regular Expressions Learning

    catalog . PCRE Introduction . pcre2api . pcre2jit . PCRE Programing 1. PCRE Introduction The PCRE li ...

  4. 深入学习 memset 函数

    最近,和同学讨论了一下memset函数,趁着周五空闲做一总结. memset函数最常用的功能就是初始化数组了(主要是置零),如 #include <iostream> #include & ...

  5. class org.springframework.core.type.classreading.ClassMetadataReadingVisitor has interface org.springframework.asm.ClassVisitor as super class

    今天在工作中遇到了下面的问题: java.lang.IllegalStateException: Failed to load ApplicationContext at org.springfram ...

  6. WCF入门

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

  7. appium+java+junit demo运行

    对java熟悉一些,所以想用java把appium给做起来.今天用myeclipse给环境和Demo弄了一下,网上没有一篇全套资料的. 各块环境的搭建: 1.安装appium客户端,省略下载和安装步骤 ...

  8. jpa OneToMany

    Project, project_id @OneToMany(mappedBy = "project") private Set<Ap> apSet =new Hash ...

  9. QT 初阶 第二章 创建对话框(查找对话框实例)

    最终效果图: 该对话框由三个文件组成:finddialog.h .finddialog.cpp. main.cpp 代码+注释 /*--finddialog.h--*/ #ifndef FINDDIA ...

  10. jquery 停止animate动画,并且回复最初状态

    // 热门推荐悬浮效果 $("#recom_con li img").mouseenter(function(){ $(this).stop(true, true); $w = p ...