题目描述

给定一棵有n个节点的无根树和m个操作,操作有2类:

1、将节点a到节点b路径上所有点都染成颜色c;

2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”、“222”和“1”。

请你写一个程序依次完成这m个操作。

输入

第一行包含2个整数n和m,分别表示节点数和操作数;

第二行包含n个正整数表示n个节点的初始颜色

下面 行每行包含两个整数x和y,表示xy之间有一条无向边。

下面 行每行描述一个操作:

“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;

“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

输出

对于每个询问操作,输出一行答案。

样例输入

6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5

样例输出

3
1
2

提示

数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间


题解

裸的树链剖分+线段树。

区间修改非常恶心,很多细节。

多写写应该就能好了吧。。。

#include <stdio.h>
#include <algorithm>
using namespace std;
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
#define N 100005
int fa[N] , deep[N] , si[N] , val[N] , bl[N] , pos[N] , tot;
int head[N] , to[N << 1] , next[N << 1] , cnt;
int sum[N << 2] , lc[N << 2] , rc[N << 2] , mark[N << 2] , n;
char str[10];
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i , y;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x])
{
fa[y] = x;
deep[y] = deep[x] + 1;
dfs1(y);
si[x] += si[y];
}
}
}
void dfs2(int x , int c)
{
int k = 0 , i , y;
bl[x] = c;
pos[x] = ++tot;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(fa[x] != y && si[y] > si[k])
k = y;
}
if(k != 0)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(fa[x] != y && y != k)
dfs2(y , y);
}
}
}
void pushup(int x)
{
lc[x] = lc[x << 1];
rc[x] = rc[x << 1 | 1];
sum[x] = sum[x << 1] + sum[x << 1 | 1];
if(rc[x << 1] == lc[x << 1 | 1])
sum[x] -- ;
}
void pushdown(int x)
{
int tmp = mark[x];
mark[x] = 0;
if(tmp)
{
sum[x << 1] = sum[x << 1 | 1] = 1;
lc[x << 1] = rc[x << 1] = lc[x << 1 | 1] = rc[x << 1 | 1] = tmp;
mark[x << 1] = mark[x << 1 | 1] = tmp;
}
}
void update(int b , int e , int v , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = 1;
lc[x] = rc[x] = v;
mark[x] = v;
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(b <= mid)
update(b , e , v , lson);
if(e > mid)
update(b , e , v , rson);
pushup(x);
}
void solveupdate(int x , int y , int v)
{
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
{
swap(x , y);
}
update(pos[bl[x]] , pos[x] , v , 1 , n , 1);
x = fa[bl[x]];
}
if(deep[x] > deep[y])
swap(x , y);
update(pos[x] , pos[y] , v , 1 , n , 1);
}
int query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
{
return sum[x];
}
pushdown(x);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid)
ans += query(b , e , lson);
if(e > mid)
ans += query(b , e , rson);
if(b <= mid && e > mid && rc[x << 1] == lc[x << 1 | 1])
ans -- ;
return ans;
}
int getcl(int p , int l , int r , int x)
{
if(l == r)
return lc[x];
pushdown(x);
int mid = (l + r) >> 1;
if(p <= mid)
return getcl(p , lson);
else
return getcl(p , rson);
}
int solvequery(int x , int y)
{
int ans = 0;
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
swap(x , y);
ans += query(pos[bl[x]] , pos[x] , 1 , n , 1);
if(getcl(pos[bl[x]] , 1 , n , 1) == getcl(pos[fa[bl[x]]] , 1 , n , 1))
ans -- ;
x = fa[bl[x]];
}
if(deep[x] > deep[y])
swap(x , y);
ans += query(pos[x] , pos[y] , 1 , n , 1);
return ans;
}
int main()
{
int i , x , y , z , m;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &val[i]);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
dfs1(1);
dfs2(1 , 1);
for(i = 1 ; i <= n ; i ++ )
update(pos[i] , pos[i] , val[i] , 1 , n , 1);
while(m -- )
{
scanf("%s" , str);
switch(str[0])
{
case 'C': scanf("%d%d%d" , &x , &y , &z); solveupdate(x , y , z); break;
default: scanf("%d%d" , &x , &y); printf("%d\n" , solvequery(x , y));
}
}
return 0;
}

【bzoj2243】[SDOI2011]染色的更多相关文章

  1. BZOJ2243 SDOI2011 染色 【树链剖分】

    BZOJ2243 SDOI2011 染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色 ...

  2. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

  3. [bzoj2243][SDOI2011]染色

    Description 给定一棵有$n$个节点的无根树和$m$个操作,操作有$2$类: 1.将节点$a$到节点$b$路径上所有点都染成颜色$c$; 2.询问节点$a$到节点$b$路径上的颜色段数量(连 ...

  4. BZOJ2243[SDOI2011]染色——树链剖分+线段树

    题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221 ...

  5. [BZOJ2243][SDOI2011]染色 解题报告|树链剖分

    Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“ ...

  6. BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)

    题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...

  7. BZOJ2243: [SDOI2011]染色(树链剖分/LCT)

    Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如 ...

  8. bzoj2243: [SDOI2011]染色--线段树+树链剖分

    此题代码量较大..但是打起来很爽 原本不用lca做一直wa不知道为什么.. 后来改lca重打了一遍= =结果一遍就AC了orz 题目比较裸,也挺容易打,主要是因为思路可以比较清晰 另:加读入优化比没加 ...

  9. BZOJ2243——[SDOI2011]染色

    1.题目大意:给个树,然后树上每个点都有颜色,然后会有路径的修改,有个询问,询问一条路径上的颜色分成了几段 2.分析:首先这个修改是树剖可以做的,对吧,但是这个分成了几段怎么搞呢,我们的树剖的不是要建 ...

  10. bzoj2243 sdoi2011 染色 paint

    明明是裸树剖 竟然调了这么久好蛋疼 大概是自己比较水的原因吧 顺便+fastio来gangbang #include<iostream> #include<cstring> # ...

随机推荐

  1. springMVC 基于注解的controller

    概述 继 Spring 2.0 对 Spring MVC 进行重大升级后,Spring 2.5 又为 Spring MVC 引入了注解驱动功能.现在你无须让 Controller 继承任何接口,无需在 ...

  2. 构建第一个maven工程

    一.maven介绍 Maven 是一个强大的项目管理和构建自动化工具,它通过抽象的项目对象模型和构建生命周期模型来对项目及其构建过程进行管理,Maven 最大化的消除了构建的重复,提升了构建的效率与标 ...

  3. 软件工程个人作业-Week2

    第一部分  调研, 评测 必应词典客户端版本:安卓版5.2.2 bug描述一:在学习页面点击“单词挑战”或“我爱说英语”会弹出“加载失败,请稍后重试”,无论点击多少次都加载不出来. bug描述二:在未 ...

  4. linux 驱动入门4

    不吃苦中苦,难为人上人.努力,给老婆孩子提供个良好的生活居住环境.http://www.cnblogs.com/nan-jing/articles/5806399.html上文提到了如何创建proc节 ...

  5. 通过命令行连接Wifi

    前提:无线网卡驱动正常安装 1.检查连接无线的接口 $ iwconfig 一般无线接口为wlan0 2.检查无线接口是否工作 $ sudo ip link set wlan0 up 3.扫描周围无线网 ...

  6. python 培训之Django

      1.Install  sudo apt-get install python-pip sudo pip install django==1.8  2. Create Project django- ...

  7. iOS qrcode 默认尺寸与修改

    四种容错格式的尺寸:27.31.31.35. // 5.将CIImage转换成UIImage,并放大显示 UIImage *imagex = [UIImage imageWithCIImage:out ...

  8. 匿名函数:Lambda表达式和匿名方法

    匿名函数一个"内联"语句或表达式,可在需要委托类型的任何地方使用.可以使用匿名函数来初始化命名委托,或传递命名委托(而不是命名委托类型)作为方法参数. 共有两种匿名函数: Lamb ...

  9. angularjs工具方法

    1.angular.extend var dst = {name: 'xxx', country: 'China'}; var src1 = {name: 'yyy', age: 10}; var s ...

  10. 简单实现Windows服务 TopShelf

    Nugut安装 log4net 和 topShelf 1)ServiceRunner类 using log4net;using Topshelf; class ServiceRunner : Serv ...