一、题目

描述

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

输入

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

输出

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

样例输入

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

样例输出

2
35
8

数据范围

数据编号 1     2      3       4        5         6       7         8         9         10
N   =    10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M   =    10 1000 1000 10000 60000 70000 80000 90000 100000 100000

附上原题链接→_→http://www.lydsy.com/JudgeOnline/problem.php?id=1798

二、题目分析

显然我们需要使用线段树来解决这个问题,关于线段树大家可以参考这两篇blog(转载已征得原博主同意)

《数据结构》线段树入门(一)

《数据结构》线段树入门(二)

但这道题有点不一样的地方——对于每一个区间,有两种不同的修改方式。如果我们对于每一次不同的修改操作,都下放一次Lazy_Tag,Lazy_Tag对时间复杂度的优化程度就会被无限制放小。换言之,我们如果对于每次不同的修改都下放一次Lazy_Tag,我们一定会收获一个TLE。我们不妨转化一下思路:

有个神奇的东西叫乘法交换律,大致长这个样子→_→  (x*a+b)*c+d=x*a*c+(b*c+d)

那么对于每个加法修改,我们只需要像以往一样更新区间的add标记就好。而当我们遇到乘法修改时,我们除了需要更新mul标记之后,还需要将区间的add标记乘以乘数。下放标记时也需要注意,从根节点下放下来的乘法标记要乘到叶节点的add标记和mul标记上,再给叶节点的add标记加上根节点下放的add标记。

说的似乎有点乱诶2333各位看官老爷还是看代码吧_(:з」∠)_

三、代码实现

 #include<stdio.h>
const int MAXN=;
int n,q;
int m;
int a[MAXN];
struct node
{
int l,r;
long long sum,add,mul;//区间和,加法标记,乘法标记
};
node tr[MAXN<<];
void build_tree(int x,int y,int i)//建树
{
tr[i].l=x;
tr[i].r=y;
tr[i].mul=;
if(x==y)tr[i].sum=a[x]%q;
else
{
int mid=(tr[i].l+tr[i].r)>>;
build_tree(x,mid,i<<);
build_tree(mid+,y,i<<|);
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
}
int val;
void push_down(int i)//标记下放
{
tr[i<<].add=(tr[i<<].add*tr[i].mul+tr[i].add)%q;
tr[i<<|].add=(tr[i<<|].add*tr[i].mul+tr[i].add)%q;
//叶节点add标记 = 叶节点add标记 * 根节点mul标记 + 根节点add标记
tr[i<<].mul=(tr[i<<].mul*tr[i].mul)%q;
tr[i<<|].mul=(tr[i<<|].mul*tr[i].mul)%q;
//叶节点mul标记 = 叶节点mul标记 * 根节点mul标记
tr[i<<].sum=((tr[i<<].sum*tr[i].mul)%q+tr[i].add*(tr[i<<].r-tr[i<<].l+))%q;
tr[i<<|].sum=((tr[i<<|].sum*tr[i].mul)%q+tr[i].add*(tr[i<<|].r-tr[i<<|].l+))%q;
//叶节点sum = 叶节点sum * 根节点mul标记 + 根节点add标记 * 叶节点区间长
tr[i].mul=;
tr[i].add=;
//标记归零
}
void update_tree_mul(int x,int y,int i)//乘法维护
{
if(x<=tr[i].l&&y>=tr[i].r)
{
tr[i].add=tr[i].add*val%q;
tr[i].mul=tr[i].mul*val%q;
tr[i].sum=tr[i].sum*val%q;
return;
}
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)update_tree_mul(x,y,i<<);
else if(x>mid)update_tree_mul(x,y,i<<|);
else
{
update_tree_mul(x,y,i<<);
update_tree_mul(x,y,i<<|);
}
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
void update_tree_add(int x,int y,int i)//加法维护
{
if(x<=tr[i].l&&y>=tr[i].r)
{
tr[i].add=(tr[i].add+val)%q;
tr[i].sum=(tr[i].sum+val*(tr[i].r-tr[i].l+))%q;
return;
}
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)update_tree_add(x,y,i<<);
else if(x>mid)update_tree_add(x,y,i<<|);
else
{
update_tree_add(x,y,i<<);
update_tree_add(x,y,i<<|);
}
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
long long query_tree(int x,int y,int i)//区间查询
{
if(x<=tr[i].l&&y>=tr[i].r)return tr[i].sum%q;
else
{
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)return query_tree(x,y,i<<);
else if(x>mid)return query_tree(x,y,i<<|);
else return (query_tree(x,y,i<<)+query_tree(x,y,i<<|))%q;
}
}
int main()
{
scanf("%d%d",&n,&q);
int i;
for(i=;i<=n;++i)
scanf("%d",&a[i]);
build_tree(,n,);
scanf("%d",&m);
for(i=;i<=m;++i)
{
int num;
scanf("%d",&num);
if(num==)
{
int x,y;
scanf("%d%d%d",&x,&y,&val);
update_tree_mul(x,y,);
}
else if(num==)
{
int x,y;
scanf("%d%d%d",&x,&y,&val);
update_tree_add(x,y,);
}
else
{
int x,y;
scanf("%d%d",&x,&y);
printf("%lld",query_tree(x,y,)%q);
printf("\n");
}
}
return ;
}

bzoj1798-维护序列seq

四、Tips

不开long long见祖宗,十年OI一场空

弱弱地说一句,本蒟蒻码字也不容易,转载请注明出处http://www.cnblogs.com/Maki-Nishikino/p/5971027.html

【双标记线段树】bzoj1798维护序列seq的更多相关文章

  1. BZOJ1798 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 8058  Solved: 2964[Submit ...

  2. BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5504  Solved: 1937[Submit ...

  3. bzoj 维护序列seq(双标记线段树)

    Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 4184  Solved: 1518[Submit][Status][Discus ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  6. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  7. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  8. BZOJ1798[Ahoi2009]Seq 维护序列seq 题解

    题目大意: 有长为N的数列,有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值. ...

  9. 1798: [Ahoi2009]Seq 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 2930  Solved: 1087[Submit ...

随机推荐

  1. JSCH实现文件上传的代码实例

    package com.vcredit.ddcash.monitor.sendmail; import java.io.File;import java.io.FileInputStream;impo ...

  2. Python3.5连接Mysql

    由于mysqldb目前仅支持到python3.4,所以这里选择pymysql. pymysql下载地址: https://pypi.python.org/packages/source/P/PyMyS ...

  3. IHttpModule

    随便写一个类继承IHttpModule 实现IHttpModule中的两个方法 Init() Dispose() public void Init(HttpApplication context) { ...

  4. ruby 分析日志,提取特定记录

    读取日志中的每一行,分析后存入hash,然后做累加 adx_openx=Hash.new(0) File.open('watch.log.2016-08-24-21').each do |line| ...

  5. CSS之border-radius

    1.圆角设置 CSS3圆角只需设置一个属性:border-radius(含义是"边框半径").你为这个属性提供一个值,就能同时设置四个圆角的半径.所有合法的CSS度量值都可以使用: ...

  6. 小谈pointer和relation

    在apicloud的数据库中,pointer和relation是在很难让人理解. 通过不断的实践,终于有点明白了. pointer和relation作用:在nosql数据库中实现表之间的关联 首先来说 ...

  7. JVM最多能创建多少个线程:unabletocreatenewnativethread

    最近需要测试一个长连接服务器,数据上需要达到100W的长连接,测试的客户端,一个线程保持一个连接,发现linux服务器默认创建到3200多个线程的时候,就会报错这个错误“java.lang.OutOf ...

  8. Did not find handler method for springMVC资源文件扫描不到---关于spring的那些坑

    今天将项目的spring版本升级到4.2.5版本后,登录首页发现资源文件全部访问不到,页面彻底挂掉: 查找原因,后来又查找spring的更新文档后,才确认下来原来是mvc-dispatcher-ser ...

  9. Python之路-python(Queue队列、进程、Gevent协程、Select\Poll\Epoll异步IO与事件驱动)

    一.进程: 1.语法 2.进程间通讯 3.进程池 二.Gevent协程 三.Select\Poll\Epoll异步IO与事件驱动 一.进程: 1.语法 简单的启动线程语法 def run(name): ...

  10. open-falcon 安装

    openfalcon 规划 拓扑图 transfer 配置文件 [root@openfalcon_transfer1 transfer]# cat cfg.json { "debug&quo ...