一、题目

描述

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

输入

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

输出

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

样例输入

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

样例输出

2
35
8

数据范围

数据编号 1     2      3       4        5         6       7         8         9         10
N   =    10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M   =    10 1000 1000 10000 60000 70000 80000 90000 100000 100000

附上原题链接→_→http://www.lydsy.com/JudgeOnline/problem.php?id=1798

二、题目分析

显然我们需要使用线段树来解决这个问题,关于线段树大家可以参考这两篇blog(转载已征得原博主同意)

《数据结构》线段树入门(一)

《数据结构》线段树入门(二)

但这道题有点不一样的地方——对于每一个区间,有两种不同的修改方式。如果我们对于每一次不同的修改操作,都下放一次Lazy_Tag,Lazy_Tag对时间复杂度的优化程度就会被无限制放小。换言之,我们如果对于每次不同的修改都下放一次Lazy_Tag,我们一定会收获一个TLE。我们不妨转化一下思路:

有个神奇的东西叫乘法交换律,大致长这个样子→_→  (x*a+b)*c+d=x*a*c+(b*c+d)

那么对于每个加法修改,我们只需要像以往一样更新区间的add标记就好。而当我们遇到乘法修改时,我们除了需要更新mul标记之后,还需要将区间的add标记乘以乘数。下放标记时也需要注意,从根节点下放下来的乘法标记要乘到叶节点的add标记和mul标记上,再给叶节点的add标记加上根节点下放的add标记。

说的似乎有点乱诶2333各位看官老爷还是看代码吧_(:з」∠)_

三、代码实现

 #include<stdio.h>
const int MAXN=;
int n,q;
int m;
int a[MAXN];
struct node
{
int l,r;
long long sum,add,mul;//区间和,加法标记,乘法标记
};
node tr[MAXN<<];
void build_tree(int x,int y,int i)//建树
{
tr[i].l=x;
tr[i].r=y;
tr[i].mul=;
if(x==y)tr[i].sum=a[x]%q;
else
{
int mid=(tr[i].l+tr[i].r)>>;
build_tree(x,mid,i<<);
build_tree(mid+,y,i<<|);
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
}
int val;
void push_down(int i)//标记下放
{
tr[i<<].add=(tr[i<<].add*tr[i].mul+tr[i].add)%q;
tr[i<<|].add=(tr[i<<|].add*tr[i].mul+tr[i].add)%q;
//叶节点add标记 = 叶节点add标记 * 根节点mul标记 + 根节点add标记
tr[i<<].mul=(tr[i<<].mul*tr[i].mul)%q;
tr[i<<|].mul=(tr[i<<|].mul*tr[i].mul)%q;
//叶节点mul标记 = 叶节点mul标记 * 根节点mul标记
tr[i<<].sum=((tr[i<<].sum*tr[i].mul)%q+tr[i].add*(tr[i<<].r-tr[i<<].l+))%q;
tr[i<<|].sum=((tr[i<<|].sum*tr[i].mul)%q+tr[i].add*(tr[i<<|].r-tr[i<<|].l+))%q;
//叶节点sum = 叶节点sum * 根节点mul标记 + 根节点add标记 * 叶节点区间长
tr[i].mul=;
tr[i].add=;
//标记归零
}
void update_tree_mul(int x,int y,int i)//乘法维护
{
if(x<=tr[i].l&&y>=tr[i].r)
{
tr[i].add=tr[i].add*val%q;
tr[i].mul=tr[i].mul*val%q;
tr[i].sum=tr[i].sum*val%q;
return;
}
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)update_tree_mul(x,y,i<<);
else if(x>mid)update_tree_mul(x,y,i<<|);
else
{
update_tree_mul(x,y,i<<);
update_tree_mul(x,y,i<<|);
}
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
void update_tree_add(int x,int y,int i)//加法维护
{
if(x<=tr[i].l&&y>=tr[i].r)
{
tr[i].add=(tr[i].add+val)%q;
tr[i].sum=(tr[i].sum+val*(tr[i].r-tr[i].l+))%q;
return;
}
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)update_tree_add(x,y,i<<);
else if(x>mid)update_tree_add(x,y,i<<|);
else
{
update_tree_add(x,y,i<<);
update_tree_add(x,y,i<<|);
}
tr[i].sum=(tr[i<<].sum+tr[i<<|].sum)%q;
}
long long query_tree(int x,int y,int i)//区间查询
{
if(x<=tr[i].l&&y>=tr[i].r)return tr[i].sum%q;
else
{
if((tr[i].mul-)||tr[i].add)push_down(i);
int mid=(tr[i].l+tr[i].r)>>;
if(y<=mid)return query_tree(x,y,i<<);
else if(x>mid)return query_tree(x,y,i<<|);
else return (query_tree(x,y,i<<)+query_tree(x,y,i<<|))%q;
}
}
int main()
{
scanf("%d%d",&n,&q);
int i;
for(i=;i<=n;++i)
scanf("%d",&a[i]);
build_tree(,n,);
scanf("%d",&m);
for(i=;i<=m;++i)
{
int num;
scanf("%d",&num);
if(num==)
{
int x,y;
scanf("%d%d%d",&x,&y,&val);
update_tree_mul(x,y,);
}
else if(num==)
{
int x,y;
scanf("%d%d%d",&x,&y,&val);
update_tree_add(x,y,);
}
else
{
int x,y;
scanf("%d%d",&x,&y);
printf("%lld",query_tree(x,y,)%q);
printf("\n");
}
}
return ;
}

bzoj1798-维护序列seq

四、Tips

不开long long见祖宗,十年OI一场空

弱弱地说一句,本蒟蒻码字也不容易,转载请注明出处http://www.cnblogs.com/Maki-Nishikino/p/5971027.html

【双标记线段树】bzoj1798维护序列seq的更多相关文章

  1. BZOJ1798 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 8058  Solved: 2964[Submit ...

  2. BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5504  Solved: 1937[Submit ...

  3. bzoj 维护序列seq(双标记线段树)

    Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 4184  Solved: 1518[Submit][Status][Discus ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  6. Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...

  7. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  8. BZOJ1798[Ahoi2009]Seq 维护序列seq 题解

    题目大意: 有长为N的数列,有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值. ...

  9. 1798: [Ahoi2009]Seq 维护序列seq

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 2930  Solved: 1087[Submit ...

随机推荐

  1. linux下mysql的忘记root密码的解决办法

    因为放寒假家里没有宽带,便很少上网,前几天用手机进入自己的个人博客时竟然返回数据库不能连接的错误,吓我一跳,网站肯定被人黑了,但转头一想我的博客就几篇破文章,谁这么无聊要黑,我并没有立刻去网上找解决的 ...

  2. JSP页面以及简单的指令

    —JSP(Java Server Pages)是指: —在HTML中嵌入Java脚本语言 —由应用服务器中的JSP引擎来编译和执行嵌入的Java脚本语言命令 —然后将生成的整个页面信息返回给客户端 页 ...

  3. 创建 PDO 实例并在构造函数中设置错误模式

    PDO 将只简单地设置错误码,可使用 PDO::errorCode() 和 PDO::errorInfo() 方法来检查语句和数据库对象.如果错误是由于对语句对象的调用而产生的,那么可以调用那个对象的 ...

  4. Java语法基础思维图

  5. Android 6.0 权限管理

    google官方例子: https://github.com/googlesamples/android-RuntimePermissions Android 6.0在我们原有的AndroidMani ...

  6. 移动端性能优化动态加载JS、CSS

    JS CODE (function() { /** * update: * 1.0 */ var version = "insure 1.1.0"; var Zepto = Zep ...

  7. 在winform中添加普通右键菜单

    显示水平滚动条:点击GridControl的Run Designer在弹出的对话框中选择Views,将右侧属性窗口中OptionsView下的ColumnAutoWidth设置成false: 可以选择 ...

  8. Wordpress基础:精简头部wp_head

    在Wordpress里 <?php wp_head(); ?> wp_head()是一个重要的函数,它允许插件开发者向你的站点动态地添加CSS和javascript,如果我们不在模板中引入 ...

  9. JS之原型对象

    1.__proto__ 每个对象都有一个__proto__属性,指向该对象的原型对象 <script> var person = function(name,city){ this.nam ...

  10. angularJs内置指令63个