/*
头文件:OurGaussmix2.h
*/
#include "opencv2/core/core.hpp"
#include <list>
#include"cv.h"
using namespace cv;//InputArray 等的定义在cv里面
namespace ourGaussmix
{ class BackgroundSubtractor: public cv::Algorithm
{
public:
virtual ~BackgroundSubtractor();
virtual void operator()(InputArray _image, OutputArray _fgmask, double learningRate);
virtual void getBackgroundImage(OutputArray backgroundImage,OutputArray backgroundImageslow) const;
}; class OurBackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
OurBackgroundSubtractorMOG2();
OurBackgroundSubtractorMOG2(int history, float varThreshold, bool bShadowDetection=true);
virtual ~OurBackgroundSubtractorMOG2();
virtual void operator()(InputArray _image, OutputArray _fgmask, double learningRate);
virtual void getBackgroundImage(OutputArray backgroundImage,OutputArray backgroundImageslow) const;
virtual void initialize(Size frameSize, int frameType);
};
} /*
cpp文件
*/
namespace ourGaussmix
{
/****************************
static const 类型的默认参数
*****************************/ struct GaussBGStatModel2Params
{
//存储参数
}; struct GMM
{
float weight;
float variance;
}; /***基类中的虚函数都设为空的***/
BackgroundSubtractor::~BackgroundSubtractor() {}
void BackgroundSubtractor::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
}
void BackgroundSubtractor::getBackgroundImage(OutputArray,OutputArray) const
{
} static CV_INLINE bool detectShadowGMM(const float* data, int nchannels, int nmodes,const GMM* gmm, const float* mean,
float Tb, float TB, float tau)
{
/*阴影检测函数内容*/
} /*定义一个结构体用来执行OurBackgroundSubtractorMOG2*/
struct MOG2Invoker
{
/*C++中结构体是一个特殊的类 下面的是构造函数*/
MOG2Invoker(const Mat& _src, Mat& _dst,
GMM* _gmm, float* _mean,
uchar* _modesUsed,
int _nmixtures, float _alphaT,
float _Tb, float _TB, float _Tg,
float _varInit, float _varMin, float _varMax,
float _prune, float _tau, bool _detectShadows,
uchar _shadowVal)
{
/*给结构体的参数赋值*/
} void operator()(const BlockedRange& range) const
{
/*混合高斯模型参数的更新*/
} }; OurBackgroundSubtractorMOG2::OurBackgroundSubtractorMOG2()
{
/*默认构造函数赋值 全部赋予默认值*/
}
OurBackgroundSubtractorMOG2::OurBackgroundSubtractorMOG2(int _history, float _varThreshold, bool _bShadowDetection)
{
/*构造函数赋值 部分自选 其他默认值*/
}
OurBackgroundSubtractorMOG2::~OurBackgroundSubtractorMOG2()
{
} void OurBackgroundSubtractorMOG2::initialize(Size _frameSize, int _frameType)
{
/*初始化函数 分配内存*/
//bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
//bgmodelUsedModes.create(frameSize,CV_8U);
//bgmodelUsedModes = Scalar::all(0);
} void OurBackgroundSubtractorMOG2::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
{
/*判断是否初始化并调用initialize*/
//parallel_for(BlockedRange(0, image.rows),
// MOG2Invoker(image, fgmask,
// (GMM*)bgmodel.data,
// (float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
// bgmodelUsedModes.data, nmixtures, (float)learningRate,
// (float)varThreshold,
// backgroundRatio, varThresholdGen,
// fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
// bShadowDetection, nShadowDetection));
} void OurBackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage,OutputArray backgroundImageslow) const
{ } }

这是opencv中混合高斯模型代码的结构梳理 parallel_for的部分没有看懂 整个的结构还是很清晰的 更新部分的代码写在了结构体MOG2Invoker的重载操作符()中,然后在OurBackgroundSubtractorMOG2的重载操作符()中调用MOG2Inovker。为什么这样写不清楚,会效率更高吗?

混合高斯模型:opencv中MOG2的代码结构梳理的更多相关文章

  1. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

  2. Opencv混合高斯模型前景分离

    #include "stdio.h" #include "string.h" #include "iostream" #include &q ...

  3. OpenCV混合高斯模型函数注释说明

    OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGF ...

  4. 运动检测(前景检测)之(二)混合高斯模型GMM

    运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新 ...

  5. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. 记录:EM 算法估计混合高斯模型参数

    当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...

  7. 机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)

    1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_E ...

  8. PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...

  9. 混合高斯模型(Mixtures of Gaussians)和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

随机推荐

  1. [译]Mongoose指南 - Model

    编译你的第一个model var xxSchema = new Schema({name: 'string', size: 'string'}); var Tank = mongoose.model( ...

  2. java框架

    Dash Reports 1.0发布 Java报表解决方案 http://developer.51cto.com/art/201205/337189.htm http://www.oschina.ne ...

  3. wordpress自动清理评论回收站

    有时wordpress的垃圾评论实在让人心烦,杂草难除根,footprint吹又生.如果你有心情的话会一个个把垃圾评论放入回收站,但是时间一长,回收站里的东西越堆越多,你可以点击回收站,然后再点一下e ...

  4. eclipse插件安装失败的列表如何清除-一个困扰很久的问题

    平时在安装eclipse插件的时候由于网络不稳定或者下载下来的包不兼容等原因安装失败的情况很多, 但是当插件安装一次以后,就会在安装的url中留下历史记录,并且每次切换到安装插件的界面中时,后台都要检 ...

  5. 【C语言入门教程】5.5 实现问题(效率)

    在设计函数时需要遵循一些基本原则,因为影响到函数的执行效率和可用性.函数是代码复用的基础,一个健壮的函数或由函数组成的函数集可以在多个程序中使用.C语言标准库里存放的就是这样的函数,这些函数被放置在头 ...

  6. hash-3.hashCode

    1.有一个类Person,有两个字段age和name,我重写Object类的equal方法来比较两个对象的age和name是否相等,但是不重写hashCode. package com.hash; p ...

  7. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  8. Unity 视频播放杂谈

    http://www.cnblogs.com/zsb517/p/4060814.html 背景:      游戏机中想加入舞蹈元素,最先的想法是开发舞蹈游戏,然后通过动画来表现舞蹈,给用户提供舞蹈教学 ...

  9. JavaScript的作用域与作用域链

    作用域 作用域就是变量与函数的可访问范围,即作用域控制着变量与函数的可见性和生命周期.可以说,变量和函数在什么时候可以用,什么时候被摧毁,这都与作用域有关. JavaScript中,变量的作用域有全局 ...

  10. ionic隐藏tabs方法

    <ion-tabs ng-class="{'tabs-item-hide': $root.hideTabs}"> <!-- tabs --> </io ...