Origin: https://plato.stanford.edu/entries/qt-quantlog/

Quantum Logic and Probability Theory

First published Mon Feb 4, 2002; substantive revision Tue Aug 10, 2021

Mathematically, quantum mechanics can be regarded as a non-classical probability calculus resting upon a non-classical propositional logic. More specifically, in quantum mechanics each probability-bearing proposition of the form “the value of physical quantity A lies in the range B” is represented by a projection operator on a Hilbert space H. These form a non-Boolean—in particular, non-distributive—orthocomplemented lattice. Quantum-mechanical states correspond exactly to probability measures (suitably defined) on this lattice.

What are we to make of this? Some have argued that the empirical success of quantum mechanics calls for a revolution in logic itself. This view is associated with the demand for a realistic interpretation of quantum mechanics, i.e., one not grounded in any primitive notion of measurement. Against this, there is a long tradition of interpreting quantum mechanics operationally, that is, as being precisely a theory of measurement. On this latter view, it is not surprising that a “logic” of measurement-outcomes, in a setting where not all measurements are compatible, should prove not to be Boolean. Rather, the mystery is why it should have the particular non-Boolean structure that it does in quantum mechanics. A substantial literature has grown up around the programme of giving some independent motivation for this structure—ideally, by deriving it from more primitive and plausible axioms governing a generalized probability theory.

  1. Quantum Mechanics as a Probability Calculus

    1.1 Quantum Probability in a Nutshell

    1.2 The “Logic” of Projections

    1.3 Probability Measures and Gleason’s Theorem

    1.4 The Reconstruction of QM
  2. Interpretations of Quantum Logic

    2.1 Realist Quantum Logic

    2.2 Operational Quantum Logic
  3. Generalized Probability Theory

    3.1 Discrete Classical Probability Theory

    3.2 Test Spaces

    3.3 Kolmogorovian Probability Theory

    3.4 Quantum Probability Theory
  4. Logics associated with probabilistic models

    4.1 Operational Logics

    4.2 Orthocoherence

    4.3 Lattices of Properties
  5. Piron’s Theorem

    5.1 Conditioning and the Covering Law
  6. Classical Representations

    6.1 Classical Embeddings

    6.2 Contextual Hidden Variables
  7. Composite Systems

    7.1 The Foulis-Randall Example

    7.2 Aerts’ Theorem

    7.3 Ramifications
  8. Effect Algebras

    8.1 Quantum effects and Naimark’s Theorem

    8.2 Sequential Effect Algebras

    Bibliography

    Academic Tools

    Other Internet Resources

    Related Entries
  9. Quantum Mechanics as a Probability Calculus

    It is uncontroversial (though remarkable) that the formal apparatus of quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over by the “quantum logic” of projection operators on a Hilbert space.[1] Moreover, the usual statistical interpretation of quantum mechanics asks us to take this generalized quantum probability theory quite literally—that is, not as merely a formal analogue of its classical counterpart, but as a genuine doctrine of chances. In this section, I survey this quantum probability theory and its supporting quantum logic.[2]

[For further background on Hilbert spaces, see the entry on quantum mechanics. For further background on ordered sets and lattices, see the supplementary document: The Basic Theory of Ordering Relations. Concepts and results explained these supplements will be used freely in what follows.]

1.1 Quantum Probability in a Nutshell

The quantum-probabilistic formalism, as developed by von Neumann [1932], assumes that each physical system is associated with a (separable) Hilbert space H, the unit vectors of which correspond to possible physical states of the system. Each “observable” real-valued random quantity is represented by a self-adjoint operator A on H, the spectrum of which is the set of possible values of A. If u is a unit vector in the domain of A, representing a state, then the expected value of the observable represented by A in this state is given by the inner product

[转载]Quantum Logic and Probability Theory的更多相关文章

  1. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

  4. [PR & ML 3] [Introduction] Probability Theory

    虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其 ...

  5. Probability theory

    1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分 ...

  6. 概率论基础知识(Probability Theory)

    概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r ...

  7. P1-概率论基础(Primer on Probability Theory)

    2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右 ...

  8. Tips on Probability Theory

    1.独立与不相关 随机变量X和Y相互独立,有:E(XY) = E(X)E(Y). 独立一定不相关,不相关不一定独立(高斯过程里二者等价) .对于均值为零的高斯随机变量,“独立”和“不相关”等价的. 独 ...

  9. CF1239A Ivan the Fool and the Probability Theory

    思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...

  10. CF C.Ivan the Fool and the Probability Theory【思维·构造】

    题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...

随机推荐

  1. Web前端入门第 42 问:聊聊 CSS 元素上下左右(水平+垂直)同时居中有几种方法

    影响元素位置的 CSS 属性基本介绍完毕(参考前几篇文章),现思考一个最常见的需求: 一个子元素,要摆放在盒子的正中央,使用 CSS 布局手段,究竟有多少种实现方式? 上下左右(水平方向.垂直方向)要 ...

  2. 【BUG】Hexo|GET _MG_0001.JPG 404 (Not Found),hexo博客搭建过程图片路径正确却找不到图片

    我的问题 我查了好多资料,结果原因是图片名称开头是_则该文件会被忽略...我注意到网上并没有提到这个问题,遂补了一下这篇博客并且汇总了我找到的所有解决办法. 具体检查方式: hexo生成一下静态资源: ...

  3. [java与https]第一篇、证书杂谈

    一.算法.密钥(对).证书.证书库 令狐冲是个马场老板,这天,他接到店里伙计电话,说有人已经签了租马合同,准备到马场提马,,他二话不说,突突突就去了,到了之后,发现不认识租客. 令狐冲说,你把你租马合 ...

  4. 解密AI知识库

    许多人对AI知识库的理解是:只需将所有资料拖入AI客户端(如Cherry Studio),AI便会自动阅读并生成完美结论. 但实际体验后,大家发现AI知识库效果远不如预期,经常出现各种问题. 技术原理 ...

  5. 操作系统综合题之“按要求是个进程协调完成任务,补充完整下列程序,将编号①~⑩处空缺的内容填写(Buffer缓冲区问题-代码补充)”

    1.问题:假设某系统有四个进程.input1和input2进程负责从不同设备读取数据,分别表示为data1和data2,存放在缓冲区Buffer中,output1和output2进程负责从Buffer ...

  6. Excel 数据显示到网页

    平时的, 数据分析过程, 会涉及很多表或者, 计算过程嘛, 有的时候, 需要将数据表啥的给同事查看和共享一下, 直接发送, 似乎不够优雅. 直接展示在网页往, 共小伙伴们查看和下载, 不就很香嘛. 其 ...

  7. Unity ML-Agents实战指南:构建多技能游戏AI训练系统

    引言:游戏AI训练的技术演进 在<赛博朋克2077>的动态NPC系统到<Dota 2>OpenAI Five的突破性表现中,强化学习正在重塑游戏AI边界.本文将通过Unity ...

  8. WPF学习问题汇集:

    WPF中ItemsSource改变,DataGrid中不更新 需要将ItemsSource先赋值为null,而后再赋值为新的值. 例如: gridBeamInfo.ItemsSource = null ...

  9. wireshark 抓包查看包得明文消息

    转载注明出处: 最近在进行一些网络消息得定位,发现可以用wireshark查看网络包得消息内容,特此记录 需要注意得是,需要将wireshark更新到最新得版本,如果是老版本有可能不支持. 使用tcp ...

  10. [python] python抽象基类使用总结

    在Python中,抽象基类是一类特殊的类,它不能被实例化,主要用于作为基类被其他子类继承.抽象基类的核心作用是为一组相关的子类提供统一的蓝图或接口规范,明确规定子类必须实现的方法,从而增强代码的规范性 ...