数据库性能优化常用sql脚本总结
最近闲来无事,正好抽出时间,来总结总结 sql性能优化方面的一下小技巧,小工具。虽然都是些很杂的东西,但是我个人觉得,如果真的清楚了里面的一下指标,或许真的能抵半个DBA。
有些时候,找不到DBA或者根本就没有DBA的时候,程序员就只能靠自己想办法了解决。久而久之,久病成医,说不定就成了半个DBA了。 这里面的一些脚本,有自己总结的,也有网上找的。希望能给程序员在性能优化方面一些帮助。(PS: 这些脚本,都是SQL Server 下的)。
1. 当前连接的Session 有多少
SELECT login_name
,[program_name]
,COUNT(session_id) AS [session_count]
FROM sys.dm_exec_sessions WITH (NOLOCK)
GROUP BY login_name,[program_name]
ORDER BY COUNT(session_id) desc;
2. 每个数据库上的Session 数量是多少
SELECT DB_NAME(dbid) AS DBName
,COUNT(dbid) AS NumberOfConnections
,loginame AS LoginName
FROM sys.sysprocesses
WHERE dbid > 0
GROUP BY dbid,loginame
3. 查看阻塞
SELECT
SPID = er.session_id
,STATUS = ses.STATUS
,[LOGIN] = ses.login_name
,HOST = ses.host_name
,BlkBy = er.blocking_session_id
,DBName = DB_NAME(er.database_id)
,CommandType = er.command
,SQLStatement = st.text
,BlockingText = bst.text
,ObjectName = OBJECT_NAME(st.objectid)
,ElapsedMS = er.total_elapsed_time
,CPUTime = er.cpu_time
,IOReads = er.logical_reads + er.reads
,IOWrites = er.writes
,LastWaitType = er.last_wait_type
,StartTime = er.start_time
,Protocol = con.net_transport
,ConnectionWrites = con.num_writes
,ConnectionReads = con.num_reads
,ClientAddress = con.client_net_address
,Authentication = con.auth_scheme
FROM sys.dm_exec_requests er
OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st
LEFT JOIN sys.dm_exec_sessions ses
ON ses.session_id = er.session_id
LEFT JOIN sys.dm_exec_connections con
ON con.session_id = ses.session_id
LEFT JOIN sys.dm_exec_requests ber
ON er.blocking_session_id=ber.session_id
OUTER APPLY sys.dm_exec_sql_text(ber.sql_handle) bst
WHERE er.session_id >
ORDER BY er.blocking_session_id DESC,er.session_id
4. 找出哪些表的Index 需要改进
SELECT CONVERT(DECIMAL(, ), user_seeks * avg_total_user_cost * (avg_user_impact * 0.01)) AS [index_advantage]
,migs.last_user_seek
,mid.[statement] AS [Database.Schema.Table]
,mid.equality_columns
,mid.inequality_columns
,mid.included_columns
,migs.unique_compiles
,migs.user_seeks
,migs.avg_total_user_cost
,migs.avg_user_impact
FROM sys.dm_db_missing_index_group_stats AS migs WITH (NOLOCK)
INNER JOIN sys.dm_db_missing_index_groups AS mig WITH (NOLOCK) ON migs.group_handle = mig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details AS mid WITH (NOLOCK) ON mig.index_handle = mid.index_handle
ORDER BY index_advantage desc
5. 查看Index 的Statistics 最后更新时间
SELECT SCHEMA_NAME(o.[schema_id]) + N'.' + o.[name] AS [Object Name]
,o.type_desc AS [Object Type]
,i.[name] AS [Index Name]
,STATS_DATE(i.[object_id], i.index_id) AS [Statistics Date]
,s.auto_created
,s.no_recompute
,s.user_created
,st.row_count
,st.used_page_count
FROM sys.objects AS o WITH (NOLOCK)
INNER JOIN sys.indexes AS i WITH (NOLOCK) ON o.[object_id] = i.[object_id]INNER JOIN sys.stats AS s WITH (NOLOCK) ON i.[object_id] = s.[object_id]
AND i.index_id = s.stats_id
INNER JOIN sys.dm_db_partition_stats AS st WITH (NOLOCK) ON o.[object_id] = st.[object_id]
AND i.[index_id] = st.[index_id]WHERE o.[type] IN ('U','V')
AND st.row_count >
ORDER BY STATS_DATE(i.[object_id], i.index_id) desc;
6. 查看Index 碎片化指数
SELECT DB_NAME(ps.database_id) AS [Database Name]
,OBJECT_NAME(ps.[object_id]) AS [Object Name]
,i.[name] AS [Index Name]
,ps.index_id
,ps.index_type_desc
,ps.avg_fragmentation_in_percent
,ps.fragment_count
,ps.page_count
,i.fill_factor
,i.has_filter
,i.filter_definition
FROM sys.dm_db_index_physical_stats(DB_ID(), NULL, NULL, NULL, N'LIMITED') AS ps
INNER JOIN sys.indexes AS i WITH (NOLOCK) ON ps.[object_id] = i.[object_id]
AND ps.index_id = i.index_id
WHERE ps.database_id = DB_ID()
AND ps.page_count >
ORDER BY ps.avg_fragmentation_in_percent desc;
7. 查询前 10 个可能是性能最差的 SQL 语句
SELECT TOP TEXT AS 'SQL Statement'
,last_execution_time AS 'Last Execution Time'
,(total_logical_reads + total_physical_reads + total_logical_writes) / execution_count AS [Average IO]
,(total_worker_time / execution_count) / 1000000.0 AS [Average CPU Time (sec)]
,(total_elapsed_time / execution_count) / 1000000.0 AS [Average Elapsed Time (sec)]
,execution_count AS "Execution Count"
,qp.query_plan AS "Query Plan"
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY total_elapsed_time / execution_count DESC
数据库性能优化常用sql脚本总结的更多相关文章
- SQL Server数据库性能优化之SQL语句篇【转】
SQL Server数据库性能优化之SQL语句篇http://www.blogjava.net/allen-zhe/archive/2010/07/23/326927.html 近期项目需要, 做了一 ...
- 数据库性能优化:SQL索引
SQL索引在数据库优化中占有一个非常大的比例, 一个好的索引的设计,可以让你的效率提高几十甚至几百倍,在这里将带你一步步揭开他的神秘面纱. 1.1 什么是索引? SQL索引有两种,聚集索引和非聚集索引 ...
- 数据库性能优化之SQL语句优化
一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的编写等是体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...
- MySQL 数据库性能优化之SQL优化
前言 有人反馈之前几篇文章过于理论缺少实际操作细节,这篇文章就多一些可操作性的内容吧. 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础. 优化目标 ...
- 数据库性能优化之SQL语句优化(上)
一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的 ...
- [转]数据库性能优化之SQL语句优化1
一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统 ...
- MySQL 数据库性能优化之SQL优化【转】
优化目标 减少 IO 次数IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑, ...
- 数据库性能优化之SQL优化
网上有关SQL优化的方案有很多,但多是杂乱无章.近日闲暇抽空整理了一下,方便大家以后的查阅,若发现其中有什么问题和不全,欢迎大家在下面纠正和补充: 1. 对于SQL语句的性能优化,主要体现在对于查询语 ...
- 数据库性能优化之SQL语句优化1
一.问题的提出 在 应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实 际应用后,随着数据库中数据的增加, ...
随机推荐
- 多重共线性的解决方法之——岭回归与LASSO
多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估 ...
- 详解Python中的循环语句的用法
一.简介 Python的条件和循环语句,决定了程序的控制流程,体现结构的多样性.须重要理解,if.while.for以及与它们相搭配的 else. elif.break.continue和pass语句 ...
- 一个"如何使用示波器安全测试接市电电路板"的问题
最近犯了一个错误测试操作: 测试场景:直接从市电插座取电接入3W非隔离开关电源电路板,使用示波器测试输出电压,此时示波器通过另外一个插座直接从市电取电 测试后果:在将示波器接到输出负极的一瞬间,漏电保 ...
- UVALive 4864 Bit Counting --记忆化搜索 / 数位DP?
题目链接: 题目链接 题意:如果一个数二进制n有k位1,那么f1[n] = k,如果k有s位二进制1,那么f2[n] = f1[k] = s. 如此往复,直到fx[n] = 1,此时的x就是n的”K ...
- COGS247. 售票系统[线段树 RMQ]
247. 售票系统 ★★☆ 输入文件:railway.in 输出文件:railway.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 某次列车途经C个城市,城市 ...
- 第4章 Java接收用户输入
第4章 Java接收用户输入 1.输入 使用Scanner工具类可以换取用户输入的数据Scanner类位于java.util包中,使用时需要导入此包使用步骤: 1.导入java.util.Scanne ...
- Nmap参数详解
转自:http://blog.csdn.net/huangwwu11/article/details/20230795 Nmap--networkmapper,网络探测工具和安全/端口扫描器 nmap ...
- windows下的NodeJS安装
1.登录官网 http://nodejs.org ,install 下载安装包.. 2.安装过程基本直接“NEXT”就可以了. 3.安装完成后可以使用cmd(win+r然后输入cmd进入)测试下是否安 ...
- CWMP开源代码研究3——ACS介绍
声明:本文涉及的开源程序代码学习和研究,严禁用于商业目的. 如有任何问题,欢迎和我交流.(企鹅号:408797506) 本文介绍自己用过的ACS,其中包括开源版(提供下载包)和商业版(仅提供安装包下载 ...
- Struts2 Validation学习
Every input is evil! ------------------------------华丽的分割线----------------------------------- 客户端提交的数 ...