\(\mathscr{Description}\)

  给定 \(n\), 集合 \(\{a_m\}\), 称一棵无标号但儿子有序的有根树合法, 当且仅当叶子权值存在一个因数在 \(\{a_m\}\) 中, 且叶子点权积不超过 \(n\). 此外, 要求不存在仅含一个儿子的结点. 求有多少棵合法树. 答案模 \(10^9+7\).

\(\mathscr{Solution}\)

  令 \(L(x)=\sum_{i}[\exists t\in\{a_m\},~t\mid i]x^i\), \(F(x)\) 为有根树关于叶子乘积和的 GF, 那么

\[ F(x)=L(x)+\sum_{i\ge 2}F^i(x),
\]

其中卷积是 Dirichlet 卷积. 推一下式子:

\[ F(x)-\frac{F^2(x)}{\epsilon-F(x)}=L(x)\\
\Rightarrow 2F^2(x)-(L(x)+\epsilon)F(x)+L(x)=0\\
\Rightarrow F(x)=\frac{L(x)+\epsilon-\sqrt{L^2(x)-6L(x)+\epsilon}}{4}.
\]

  我们想要求 \(F(x)\) 前缀系数和, 如果能求出 \(L^2(x)-6L(x)+\epsilon\) 的 \(\sqrt n\) 个前缀和, 并以此算出开根后 \(n\) 处的前缀和, 实际上就结束了.

  不太平凡的只有 Dirichlet 开根, 令 \(G^2(x)=T(x)=L^2(x)-6L(x)+\epsilon\), 那么

\[ \sum_{i=1}^m\sum_{d\mid i}g_dg_{i/d}=\sum_{i=1}^mt_i\\
\Rightarrow 2S_g(m)=S_t(m)-\sum_{i=2}^{m/2}g_iS_g(m/i)+S_g(m/2+1).
\]

  经过暴力卷积预处理分块, 可以做到 \(\mathcal O(n^{2/3}\ln^{1/3}n)\).

\(\mathscr{Code}\)

/*+Rainybunny+*/

#include <bits/extc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef long long LL; const int MOD = 1e9 + 7, MAXM = 8, INV2 = 500000004, INV4 = 250000002;
const int THRES = 2e6, MAXSQRT = 1e5; // (n/ln(n))^{2/3}.
// const int THRES = 5;
LL n, lcm[1 << MAXM];
int sn, m, a[MAXM + 5], L[THRES + 5], L2[THRES + 5], G[THRES + 5];
int pn, pr[THRES + 5], mp[THRES + 5];
bool npr[THRES + 5]; inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline void subeq(int& u, const int v) { (u -= v) < 0 && (u += MOD); }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline void addeq(int& u, const int v) { (u += v) >= MOD && (u -= MOD); }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
} inline void init() {
rep (i, 2, THRES) {
if (!npr[i]) mp[pr[++pn] = i] = i;
for (int j = 1, t; j <= pn && (t = i * pr[j]) <= THRES; ++j) {
npr[t] = true, mp[t] = pr[j];
if (!(i % pr[j])) break;
}
} rep (S, 1, (1 << m) - 1) {
lcm[S] = 1;
rep (i, 0, m - 1) if (S >> i & 1) {
lcm[S] = lcm[S] / std::__gcd(lcm[S], 0ll + a[i]) * a[i];
}
if (__builtin_parity(S)) rep (i, 1, THRES / lcm[S]) ++L[lcm[S] * i];
else rep (i, 1, THRES / lcm[S]) --L[lcm[S] * i];
}
rep (i, 1, THRES) rep (j, 1, THRES / i) addeq(L2[i * j], mul(L[i], L[j])); G[1] = 1;
rep (i, 2, THRES) {
static int pc, pv[30], alp[30]; pc = 0;
for (int t = i; t > 1;) {
pv[++pc] = mp[t], alp[pc] = 0;
while (mp[t] == pv[pc]) ++alp[pc], t /= pv[pc];
} std::function<int(int, int)>
contri = [&](const int x, int v)->int {
if (x > pc) return mul(G[v], G[i / v]);
int ret = 0;
rep (j, 1, alp[x]) addeq(ret, contri(x + 1, v)), v *= pv[x];
return add(ret, contri(x + 1, v));
};
G[i] = mul(sub(sub(L2[i], mul(6, L[i])), contri(1, 1)), INV2);
} rep (i, 1, THRES) {
addeq(L[i], L[i - 1]), addeq(L2[i], L2[i - 1]), addeq(G[i], G[i - 1]);
}
} inline int id(const LL x) { return x <= sn ? x : sn + n / x; } inline int calcL(const LL m) {
static int mem[MAXSQRT * 2 + 5];
static int vis[MAXSQRT * 2 + 5];
if (m <= THRES) return L[m];
int h = id(m);
if (vis[h]) return mem[h];
int& ret = mem[h]; vis[h] = true;
rep (S, 1, (1 << ::m) - 1) {
(__builtin_parity(S) ? addeq : subeq)(ret, m / lcm[S] % MOD);
}
return ret;
} inline int calcL2(const LL m) {
static int mem[MAXSQRT * 2 + 5];
static int vis[MAXSQRT * 2 + 5];
if (m <= THRES) return L2[m];
int h = id(m);
if (vis[h]) return mem[h];
int& ret = mem[h] = 0; vis[h] = true;
for (LL l = 2, r; l <= m; l = r + 1) {
r = m / (m / l);
addeq(ret, mul(calcL(m / l), sub(calcL(r), calcL(l - 1))));
}
return ret;
} inline int calcG(const LL m) {
static int mem[MAXSQRT * 2 + 5];
static int vis[MAXSQRT * 2 + 5];
if (m <= THRES) return G[m];
int h = id(m);
if (vis[h]) return mem[h];
int& ret = mem[h] = add(sub(calcL2(m), mul(6, calcL(m))), 1); vis[h] = 1;
for (LL l = 2, r; l <= m; l = r + 1) {
r = m / (m / l);
if (m / l == 1) addeq(ret, calcG(l - 1));
else subeq(ret, mul(calcG(m / l), sub(calcG(r), calcG(l - 1))));
}
ret = mul(ret, INV2);
return ret;
} int main() {
freopen("tree.in", "r", stdin);
freopen("tree.out", "w", stdout); scanf("%lld %d", &n, &m), sn = sqrt(n);
rep (i, 0, m - 1) scanf("%d", &a[i]); init(); int ans = mul(sub(add(calcL(n), 1), calcG(n)), INV4);
printf("%d\n", ans);
return 0;
}

Solution -「NOI Simu.」树的更多相关文章

  1. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

  2. Solution -「NOI 2018」「洛谷 P4768」归程

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的无向连通图,边形如 \((u,v,l,a)\).每次询问给出 \(u,p\),回答 ...

  3. Solution -「NOI 2021」「洛谷 P7740」机器人游戏

    \(\mathcal{Description}\)   Link.   自己去读题面叭~ \(\mathcal{Solution}\)   首先,参悟[样例解释 #2].一种暴力的思路即为钦定集合 \ ...

  4. Solution -「NOI 2016」「洛谷 P1587」循环之美

    \(\mathcal{Description}\)   Link.   给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb ...

  5. Solution -「NOI 2012」「洛谷 P2050」美食节

    \(\mathcal{Description}\)   Link.   美食节提供 \(n\) 种菜品,第 \(i\) 种的需求量是 \(p_i\),菜品由 \(m\) 个厨师负责制作,第 \(j\) ...

  6. Solution -「NOI 2008」「洛谷 P3980」志愿者招募

    \(\mathcal{Description}\)   Link.   一项持续 \(n\) 天的任务,第 \(i\) 天需要至少 \(a_i\) 人工作.还有 \(m\) 种雇佣方式,第 \(i\) ...

  7. loj#2054. 「TJOI / HEOI2016」树

    题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...

  8. AC日记——#2054. 「TJOI / HEOI2016」树

    #2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...

  9. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  10. Solution -「BZOJ 4316」小C的独立集

    \(\mathcal{Description}\)   Link.   求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集.   \(n\le5\times10^4\),\(m\le6\ ...

随机推荐

  1. 聊聊jvm的内存结构, 以及各种结构的作用

    什么是JVM 定义:Java Virtual Machine,JAVA程序的运行环境(JAVA二进制字节码的运行环境) 内存结构 JVM 内存布局规定了 Java 在运行过程中内存申请.分配.管理的策 ...

  2. 开源一款AI聊天工具

    学习Spring AI项目,开发一款问答工具 AI大模型请注册并生成API密钥 获取API密钥地址:https://bigmodel.cn/console/overview 开源地址:LuckyAI ...

  3. 号码变换配置对接运营商IMS

    概述 freeswitch是一款简单好用的VOIP开源软交换平台. fs直接对接运营商,调试过程中的号码变换规则比较容易出问题. 本文档记录一个较为通用的对接IMS配置方案. 环境 CentOS 7. ...

  4. 关于免费笔记软件Obsidian和免费同步,长文,保存观看

    前言 这段可以略过 最早使用的笔记软件(应该说是网页摘录软件)是网文快捕 CyberArticle ,但不停换电脑后当年保存的资料基本都遗失了,那可是我翻阅众多涩涩网站的精华文章. 后来网文快捕推出了 ...

  5. vue2-基础核心

    vue简介 vue中文官网 动态构建用户界面的渐进式 JavaScript 框架 vue的特点: 遵循MVVM模式 采用组件化模式,提高代码复用率,让代码更好维护 声明式编码,无需直接操作DOM,提高 ...

  6. npm安装包出现Invalid Version,npm list报错UNMET DEPENDENCY报错

    执行 npm install 出现报错 2097 verbose stack TypeError: Invalid Version: 2097 verbose stack at new SemVer ...

  7. Java基础总结大纲(一)

    1.JVM.JRE.和JDK的区别: JVM(Java Virtual Machine):java虚拟机,用于保证java的跨平台的特性.说明:java是跨平台的而JVM不是跨平台的,正对的不同的语言 ...

  8. 2019 ICPC Universidad Nacional de Colombia Programming Contest

    A. Amazon 给定\(n\)条直线(存在共线的情况),在每两条垂直的直线的交点处需要建一个交叉点,求交叉点的数量,注意需要去除共线时候的交叉点 题解 因为要除去共线的情况,我们考虑将一条直线以方 ...

  9. Vue.js 数据绑定

    1.标签内容绑定 双括号语法:使用 {{}} 将变量包裹起来,vue会将变量的值解析为普通文本,而非 HTML 代码 <div>{{msg}}</div> <div> ...

  10. Vue.js 过渡 & 动画

    1.前言 Vue动画/过渡的本质: 在通过v-if/v-show指令插入/移除/显示/隐藏某个标签元素时,在这个标签上包裹一个transition标签,Vue会为这个标签动态添加css类名,为这些类名 ...