CountDownLatch底层原理和示例
CountDownLatch 是一个同步工具类,允许一个线程或者多个线程等待其他线程完成操作,再执行。

CountDownLatch(int count)
构造一个用给定计数初始化的 CountDownLatch。 // 使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断。
void await()
// 使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断或超出了指定的等待时间。
boolean await(long timeout, TimeUnit unit)
// 递减锁存器的计数,如果计数到达零,则释放所有等待的线程。
void countDown()
// 返回当前计数。
long getCount()
// 返回标识此锁存器及其状态的字符串。
String toString()

CountDownLatch和CyclicBarrier的区别:
(1).CountDownLatch 的作用是允许1或者多个线程,等待另外N个线程完成某件事情之后,这1个或者多个线程才能执行。CyclicBarrier 是N个线程相互等待,任何一个线程完成任务之前,所有的线程必须等待。
(2).CountDownLatch 计数器是一次性的,无法被重置的,而CyclicBarrier的计数器在调用reset方法之后,还可以重新使用,因此被称为循环的barrier。
CountDownLatch 底层实现:
1.构造方法:创建一个Sync对象,而Sync继承AQS。

/**
* Constructs a {@code CountDownLatch} initialized with the given count.
*
* @param count the number of times {@link #countDown} must be invoked
* before threads can pass through {@link #await}
* @throws IllegalArgumentException if {@code count} is negative
*/
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}

2.Sync 是CountDownLatch的内部私有类,组合到CountDownLatch里:

/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L; Sync(int count) {
setState(count);
} int getCount() {
return getState();
} protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
} protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
} private final Sync sync;

在AQS中state是一个private volatile int类型的对象。CountDownLatch使用state来计数,CountDownLatch的getCount最终调用的是AQS的getState()
,返回state进行计数。
3.await()方法:调用AQS的acquireSharedInterruptibly方法
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}

//1.获取共享锁
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
//判断线程是否为中断状态,如果是抛出interruptedException
if (Thread.interrupted())
throw new InterruptedException();
//尝试获取共享锁,尝试成功就返回,否则调用doAcquireSharedInterruptibly方法
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}

//2.尝试获取共享锁,重写AQS里面的方法
protected int tryAcquireShared(int acquires) {
//锁状态 == 0,表示所没有被任何线程所获取,即是可获取的状态,否则锁是不可获取的状态
return (getState() == 0) ? 1 : -1;
}

//3.doAcquireSharedInterruptibly方法会使得当前线程一直等待,直到当前线程获取到锁(或被中断)才返回
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
//创建“当前线程”的Node节点,且node中记录的锁是“共享锁”类型,并将节点添加到CLH队列末尾。
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
//获取前继节点,如果前继节点是等待锁队列的表头,则尝试获取共享锁
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
//前继节点不是表头,当前线程一直等待,直到获取到锁
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}


/*说明:4.shouldParkAfterFailedAcquire 返回当前线程是否应该阻塞
(01) 关于waitStatus请参考下表(中扩号内为waitStatus的值),更多关于waitStatus的内容,可以参考前面的Node类的介绍。 CANCELLED[1] -- 当前线程已被取消
SIGNAL[-1] -- “当前线程的后继线程需要被unpark(唤醒)”。一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。
CONDITION[-2] -- 当前线程(处在Condition休眠状态)在等待Condition唤醒
PROPAGATE[-3] -- (共享锁)其它线程获取到“共享锁”
[0] -- 当前线程不属于上面的任何一种状态。
(02) shouldParkAfterFailedAcquire()通过以下规则,判断“当前线程”是否需要被阻塞。 规则1:如果前继节点状态为SIGNAL,表明当前节点需要被unpark(唤醒),此时则返回true。
规则2:如果前继节点状态为CANCELLED(ws>0),说明前继节点已经被取消,则通过先前回溯找到一个有效(非CANCELLED状态)的节点,并返回false。
规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,并返回false。
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 前驱节点的状态
int ws = pred.waitStatus;
// 如果前驱节点是SIGNAL状态,则意味着当前线程需要unpark唤醒,此时返回true
if (ws == Node.SIGNAL) return true;
// 如果前继节点是取消的状态,则设置当前节点的“当前前继节点为”原节点的前继节点
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// waitStatus must be 0 or PROPAGATE. Indicate that we need a signal, but don't park yet. Caller will need to retry to make sure
//it cannot acquire before parking.
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}

4. countDown()源码 :
//1.该方法其实调用AQS中的releaseShared(1)释放共享锁方法。
public void countDown() {
sync.releaseShared(1);
}

//2.目的是让当前线程释放它所持有的共享锁,它首先会通过tryReleaseShared()去尝试释放共享锁。尝试成功,则直接返回;尝试失败,则通过doReleaseShared()去释放共享锁。
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}


//3.tryReleaseShared()在CountDownLatch.java中被重写,释放共享锁,将锁计数器-1
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
// 获取“锁计数器”的状态
int c = getState();
if (c == 0)
return false;
// “锁计数器”-1
int nextc = c-1;
// 通过CAS函数进行赋值。
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}

实例:

public class CountDownLatchTest1 {
private static int SPORTSMAN_COUNT = 10;
private static final Random random = new Random();
// 用于判断发令之前运动员是否已经进入准备状态,需要等待10个运动员准备就绪,占有锁,等待10个运动员完成,释放锁。
private static CountDownLatch readyLatch = new CountDownLatch(SPORTSMAN_COUNT);
// 用于判断裁判是否已经发令,占有锁,等待裁判发令完成,释放锁
private static CountDownLatch startLatch = new CountDownLatch(1);
public static void main(String[] args) {
// 用于判断发令之前运动员是否已经进入准备状态,需要等待10个运动员准备就绪,占有锁,等待10个运动员完成,释放锁。
// CountDownLatch readyLatch = new CountDownLatch(SPORTSMAN_COUNT);
// 用于判断裁判是否已经发令,占有锁,等待裁判发令完成,释放锁
// CountDownLatch startLatch = new CountDownLatch(1);
// 启动10个线程,也就是10个运动员,做准备工作
for (int i = 0; i < SPORTSMAN_COUNT; i++) {
Thread t = new Thread(new MyTask((i + 1) + "号运动员", readyLatch, startLatch));
t.start();
}
// 当前运动员在其他运动员准备就绪前一直等待,也就是说等readyLatch倒数计数器为0之前一直等待
try {
readyLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 裁判发令,释放锁
startLatch.countDown();
System.out.println("裁判:所有运动员准备完毕,开始...");
}
static class MyTask implements Runnable {
private Lock lock = new ReentrantLock();
private CountDownLatch ready;
private CountDownLatch start;
private String name;
/**
*
* (构造方法)
*
* @param ready
* @param start
* @param name 运动员名称
*/
public MyTask(String name, CountDownLatch ready, CountDownLatch start) {
this.ready = ready;
this.start = start;
this.name = name;
}
@Override
public void run() {
lock.lock();
try {
// 1. 写运动员准备就绪的逻辑,准备readyTime秒
int readyTime = random.nextInt(1000);
System.out.println(name + ":我需要" + readyTime + "秒的时间准备。");
try {
Thread.sleep(readyTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(name + "我已经准备完毕!");
// 释放锁readyLatch-1,表示一个运动员已经就绪
ready.countDown();
try {
// 等待裁判发开始命令
start.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(name + ":开跑...");
} catch (Exception e) {
// TODO: handle exception
} finally {
lock.unlock();
}
}
}
}

运行结果:

1号运动员:我需要757秒的时间准备。
2号运动员:我需要9秒的时间准备。
3号运动员:我需要602秒的时间准备。
4号运动员:我需要232秒的时间准备。
5号运动员:我需要454秒的时间准备。
6号运动员:我需要440秒的时间准备。
7号运动员:我需要333秒的时间准备。
8号运动员:我需要406秒的时间准备。
9号运动员:我需要613秒的时间准备。
10号运动员:我需要121秒的时间准备。
2号运动员我已经准备完毕!
10号运动员我已经准备完毕!
4号运动员我已经准备完毕!
7号运动员我已经准备完毕!
8号运动员我已经准备完毕!
6号运动员我已经准备完毕!
5号运动员我已经准备完毕!
3号运动员我已经准备完毕!
9号运动员我已经准备完毕!
1号运动员我已经准备完毕!
裁判:所有运动员准备完毕,开始...
10号运动员:开跑...
8号运动员:开跑...
3号运动员:开跑...
1号运动员:开跑...
2号运动员:开跑...
9号运动员:开跑...
5号运动员:开跑...
6号运动员:开跑...
7号运动员:开跑...
4号运动员:开跑...

总结:CountDownLatch通过AQS里面的共享锁来实现的,在创建CountDownLatch时候,会传递一个参数count,该参数是锁计数器的初始状态,表示该共享锁能够被count个线程同时获取。当某个线程调用CountDownLatch对象的await方法时候,该线程会等待共享锁可获取时,才能获取共享锁继续运行,而共享锁可获取的的条件是state == 0,而锁倒数计数器的初始值为count,每当一个线程调用该CountDownLatch对象的countDown()方法时候,计数器才-1,所以必须有count个线程调用该countDown()方法后,锁计数器才为0,这个时候等待的线程才能继续运行。
CountDownLatch底层原理和示例的更多相关文章
- JUC系列回顾之-CountDownLatch底层原理和示例
CountDownLatch 是一个同步工具类,允许一个线程或者多个线程等待其他线程完成操作,再执行. CountDownLatch(int count) 构造一个用给定计数初始化的 CountDow ...
- Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例
概要 本章介绍JUC包中的CyclicBarrier锁.内容包括:CyclicBarrier简介CyclicBarrier数据结构CyclicBarrier源码分析(基于JDK1.7.0_40)Cyc ...
- Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例
概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 ...
- Neo4j图数据库简介和底层原理
现实中很多数据都是用图来表达的,比如社交网络中人与人的关系.地图数据.或是基因信息等等.RDBMS并不适合表达这类数据,而且由于海量数据的存在,让其显得捉襟见肘.NoSQL数据库的兴起,很好地解决了海 ...
- JavaScript是如何工作的: CSS 和 JS 动画底层原理及如何优化它们的性能
摘要: 理解浏览器渲染. 原文:JavaScript是如何工作的: CSS 和 JS 动画底层原理及如何优化它们的性能 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 这是专门探索 J ...
- 《React Native 精解与实战》书籍连载「React Native 底层原理」
此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...
- Redis字符串键的底层原理
before C语言基础 Redis基础 导入 redis的命令如下: set x "hello"; get x; hello Redis作为一种存储字符串的缓存结构,其具体实现是 ...
- 原理解密 → Spring AOP 实现动态数据源(读写分离),底层原理是什么
开心一刻 女孩睡醒玩手机,收到男孩发来一条信息:我要去跟我喜欢的人表白了! 女孩的心猛的一痛,回了条信息:去吧,祝你好运! 男孩回了句:但是我没有勇气说不来,怕被打! 女孩:没事的,我相信你!此时女孩 ...
- 红黑树规则,TreeSet原理,HashSet特点,什么是哈希值,HashSet底层原理,Map集合特点,Map集合遍历方法
==学习目标== 1.能够了解红黑树 2.能够掌握HashSet集合的特点以及使用(特点以及使用,哈希表数据结构) 3.能够掌握Map集合的特点以及使用(特点,常见方法,Map集合的遍历) 4.能够掌 ...
- Linux从头学06:16张结构图,彻底理解【代码重定位】的底层原理
作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...
随机推荐
- 别再被多线程搞晕了!一篇文章轻松搞懂 Linux 多线程同步!
前言 大家有没有遇到过,代码跑着跑着,线程突然抢资源抢疯了?其实,这都是"多线程同步"在作怪.多线程同步是个老生常谈的话题,可每次真正要处理时还是让人头疼.这篇文章,带你从头到尾掌 ...
- Flink RetractStream示例及UDF函数实现
介绍 今天在Flink 1.7.2版本上跑一个Flink SQL 示例 RetractPvUvSQL,报 Exception in thread "main" org.apache ...
- Surface pro 11二合一平板参数调研
最近研究了下Surface pro 11,记录下相关参数,矩阵我以表格列出来.可能不够细,大家作个参考吧 模块 技术项 参数 备注 处理器 型号 Snapdragon X Elite(X1E-80-1 ...
- 自动化构建镜像:Packer
在介绍Packer之前,先来回顾一下未使用Packer时自定义虚拟机镜像的步骤.先在本地启动一个虚拟机,从安装系统开始,再进行自定义配置或应用安装,最后封装压缩成镜像,详细操作步骤可以参考我之前写的文 ...
- C# 入门深度学习:万字长文讲解微积分和梯度下降
教程名称:使用 C# 入门深度学习 作者:痴者工良 地址: https://torch.whuanle.cn 目录 微积分 极限 导数 求导公式 乘除求导例题 复合函数求导的链式法则 Sigmoid ...
- gearman任务分发改进
基于我上次在这里发现的问题,就是一次性投递20个消息,用sleep等待后发现,最后一个任务需要等前面19个都跑完才能执行,所以这里做一下改进. client.php <?php $client ...
- 移动端自动化之uiautomator2
github: https://github.com/openatx/uiautomator2 [安装] pip3 install -U uiautomator2# 安装UI Inspector -- ...
- Javascript 标签的属性
1.为HTML标签设置和添加属性 setAttribute() setAttribute()方法可以给HTML标签设置/添加属性(原生的属性或者自定义的属性都可以)添加的属性会存储在标签中 <! ...
- 正也科技S2P 数字化推动医药信息传播多元化
在当今数字化迅猛发展的时代浪潮中,医药信息传播正经历着深刻而广泛的变革.这种变革犹如一场波澜壮阔的革命,席卷了医药领域的每一个角落,对医药行业的发展产生了深远且不可忽视的影响. 一.传播渠道的多元化拓 ...
- cmd操作license服务
配置客户机的时候,有时候需要自启动相关服务,例如ArcGIS License Manager. 关于启动服务,参考了别人的意见.点击打开链接 最终用了net start 服务名和net sop 服务名 ...