Data Preparation in Pandas
Data cleaning
import pandas as pd
import numpy as np
string_data=pd.Series(['aardvark','artichoke',np.nan,'avocado']);string_data
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
string_data.isnull()
0 False
1 False
2 True
3 False
dtype: bool
string_data[2]
nan
from numpy import nan as NA
data=pd.Series([1,NA,3.5,NA,7])
data.dropna()
0 1.0
2 3.5
4 7.0
dtype: float64
data[[False,True,True,False,False]]
1 NaN
2 3.5
dtype: float64
data[data.notnull()]
0 1.0
2 3.5
4 7.0
dtype: float64
data=pd.DataFrame([[1,6.5,3],[1,NA,NA],[NA,NA,NA],[NA,6.5,3]]);data
|
0 |
1 |
2 |
| 0 |
1.0 |
6.5 |
3.0 |
| 1 |
1.0 |
NaN |
NaN |
| 2 |
NaN |
NaN |
NaN |
| 3 |
NaN |
6.5 |
3.0 |
data.dropna()
data.dropna(how='all')
|
0 |
1 |
2 |
| 0 |
1.0 |
6.5 |
3.0 |
| 1 |
1.0 |
NaN |
NaN |
| 3 |
NaN |
6.5 |
3.0 |
data[4]=NA;data
|
0 |
1 |
2 |
4 |
| 0 |
1.0 |
6.5 |
3.0 |
NaN |
| 1 |
1.0 |
NaN |
NaN |
NaN |
| 2 |
NaN |
NaN |
NaN |
NaN |
| 3 |
NaN |
6.5 |
3.0 |
NaN |
data.dropna(how='all',axis='columns')
|
0 |
1 |
2 |
| 0 |
1.0 |
6.5 |
3.0 |
| 1 |
1.0 |
NaN |
NaN |
| 2 |
NaN |
NaN |
NaN |
| 3 |
NaN |
6.5 |
3.0 |
df=pd.DataFrame(np.random.randn(7,3))
df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
-0.281787 |
-0.963212 |
| 1 |
-1.114174 |
0.024707 |
0.095524 |
| 2 |
0.879205 |
-1.272202 |
-0.317218 |
| 3 |
0.227725 |
-0.067809 |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
help(np.random.randn)
Help on built-in function randn:
randn(...) method of mtrand.RandomState instance
randn(d0, d1, ..., dn)
Return a sample (or samples) from the "standard normal" distribution.
If positive, int_like or int-convertible arguments are provided,
`randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.
This is a convenience function. If you want an interface that takes a
tuple as the first argument, use `numpy.random.standard_normal` instead.
Parameters
----------
d0, d1, ..., dn : int, optional
The dimensions of the returned array, should be all positive.
If no argument is given a single Python float is returned.
Returns
-------
Z : ndarray or float
A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.
See Also
--------
random.standard_normal : Similar, but takes a tuple as its argument.
Notes
-----
For random samples from :math:`N(\mu, \sigma^2)`, use:
``sigma * np.random.randn(...) + mu``
Examples
--------
>>> np.random.randn()
2.1923875335537315 #random
Two-by-four array of samples from N(3, 6.25):
>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random
df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
-0.281787 |
-0.963212 |
| 1 |
-1.114174 |
0.024707 |
0.095524 |
| 2 |
0.879205 |
-1.272202 |
-0.317218 |
| 3 |
0.227725 |
-0.067809 |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.iloc[:4,1]=NA;df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
NaN |
-0.963212 |
| 1 |
-1.114174 |
NaN |
0.095524 |
| 2 |
0.879205 |
NaN |
-0.317218 |
| 3 |
0.227725 |
NaN |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.iloc[:2,2]=NA;df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
NaN |
NaN |
| 1 |
-1.114174 |
NaN |
NaN |
| 2 |
0.879205 |
NaN |
-0.317218 |
| 3 |
0.227725 |
NaN |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.dropna()
|
0 |
1 |
2 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.dropna(thresh=2)
|
0 |
1 |
2 |
| 2 |
0.879205 |
NaN |
-0.317218 |
| 3 |
0.227725 |
NaN |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.fillna(0)
|
0 |
1 |
2 |
| 0 |
-1.744196 |
0.000000 |
0.000000 |
| 1 |
-1.114174 |
0.000000 |
0.000000 |
| 2 |
0.879205 |
0.000000 |
-0.317218 |
| 3 |
0.227725 |
0.000000 |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.fillna({1:0.5,2:0})
|
0 |
1 |
2 |
| 0 |
-1.744196 |
0.500000 |
0.000000 |
| 1 |
-1.114174 |
0.500000 |
0.000000 |
| 2 |
0.879205 |
0.500000 |
-0.317218 |
| 3 |
0.227725 |
0.500000 |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
NaN |
NaN |
| 1 |
-1.114174 |
NaN |
NaN |
| 2 |
0.879205 |
NaN |
-0.317218 |
| 3 |
0.227725 |
NaN |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df.fillna(0,inplace=True)
df
|
0 |
1 |
2 |
| 0 |
-1.744196 |
0.000000 |
0.000000 |
| 1 |
-1.114174 |
0.000000 |
0.000000 |
| 2 |
0.879205 |
0.000000 |
-0.317218 |
| 3 |
0.227725 |
0.000000 |
0.609824 |
| 4 |
-1.082470 |
-1.230476 |
-1.616135 |
| 5 |
-1.218976 |
0.018245 |
-0.155761 |
| 6 |
-0.607157 |
-0.641986 |
-0.406378 |
df=pd.DataFrame(np.random.randn(6,3))
df.iloc[2:,1]=NA
df.iloc[4:,2]=NA
df
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
NaN |
2.034865 |
| 3 |
0.088611 |
NaN |
-0.004141 |
| 4 |
0.792289 |
NaN |
NaN |
| 5 |
0.668345 |
NaN |
NaN |
df.fillna(method='ffill')
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
0.290834 |
2.034865 |
| 3 |
0.088611 |
0.290834 |
-0.004141 |
| 4 |
0.792289 |
0.290834 |
-0.004141 |
| 5 |
0.668345 |
0.290834 |
-0.004141 |
df
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
NaN |
2.034865 |
| 3 |
0.088611 |
NaN |
-0.004141 |
| 4 |
0.792289 |
NaN |
NaN |
| 5 |
0.668345 |
NaN |
NaN |
df.dropna()
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
df.dropna(thresh=2)
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
NaN |
2.034865 |
| 3 |
0.088611 |
NaN |
-0.004141 |
df.dropna(thresh=2,inplace=True)
df
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
NaN |
2.034865 |
| 3 |
0.088611 |
NaN |
-0.004141 |
data=pd.DataFrame({'K1':['one','two']*3+['two'],'K2':[1,1,2,3,3,4,4]});data
|
K1 |
K2 |
| 0 |
one |
1 |
| 1 |
two |
1 |
| 2 |
one |
2 |
| 3 |
two |
3 |
| 4 |
one |
3 |
| 5 |
two |
4 |
| 6 |
two |
4 |
data.duplicated()
0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool
data.drop_duplicates()
|
K1 |
K2 |
| 0 |
one |
1 |
| 1 |
two |
1 |
| 2 |
one |
2 |
| 3 |
two |
3 |
| 4 |
one |
3 |
| 5 |
two |
4 |
data['v1']=range(7)
data
|
K1 |
K2 |
v1 |
| 0 |
one |
1 |
0 |
| 1 |
two |
1 |
1 |
| 2 |
one |
2 |
2 |
| 3 |
two |
3 |
3 |
| 4 |
one |
3 |
4 |
| 5 |
two |
4 |
5 |
| 6 |
two |
4 |
6 |
data.drop_duplicates(['K1','K2'])
|
K1 |
K2 |
v1 |
| 0 |
one |
1 |
0 |
| 1 |
two |
1 |
1 |
| 2 |
one |
2 |
2 |
| 3 |
two |
3 |
3 |
| 4 |
one |
3 |
4 |
| 5 |
two |
4 |
5 |
df
|
0 |
1 |
2 |
| 0 |
-0.970921 |
-1.311345 |
0.779965 |
| 1 |
-0.352837 |
0.290834 |
-0.440396 |
| 2 |
0.574406 |
NaN |
2.034865 |
| 3 |
0.088611 |
NaN |
-0.004141 |
data
|
K1 |
K2 |
v1 |
| 0 |
one |
1 |
0 |
| 1 |
two |
1 |
1 |
| 2 |
one |
2 |
2 |
| 3 |
two |
3 |
3 |
| 4 |
one |
3 |
4 |
| 5 |
two |
4 |
5 |
| 6 |
two |
4 |
6 |
data.drop_duplicates(['K1','K2'])
|
K1 |
K2 |
v1 |
| 0 |
one |
1 |
0 |
| 1 |
two |
1 |
1 |
| 2 |
one |
2 |
2 |
| 3 |
two |
3 |
3 |
| 4 |
one |
3 |
4 |
| 5 |
two |
4 |
5 |
Transforming Data Using a Function or Mapping
import pandas as pd
import numpy as np
data=pd.DataFrame({'food':['bacon','pulled pork','bacon','pastrami','corned beef','Bacon','Pastrami','honey ham','nova lox'],
'ounces':[4,3,12,6,7.5,8,3,5,6]});data
|
food |
ounces |
| 0 |
bacon |
4.0 |
| 1 |
pulled pork |
3.0 |
| 2 |
bacon |
12.0 |
| 3 |
pastrami |
6.0 |
| 4 |
corned beef |
7.5 |
| 5 |
Bacon |
8.0 |
| 6 |
Pastrami |
3.0 |
| 7 |
honey ham |
5.0 |
| 8 |
nova lox |
6.0 |
meat_to_animal={'bacon':'pig',
'pulled pork':'pig',
'pastrami':'cow',
'corned beef':'cow',
'honey ham':'pig',
'nova lox':'salmon'}
pd.Series.str.lower
<function pandas.core.strings._noarg_wrapper.<locals>.wrapper>
- str.lower above is a Series method.
lowercased=data['food'].str.lower()
data['animal']=lowercased
data
|
food |
ounces |
animal |
| 0 |
bacon |
4.0 |
bacon |
| 1 |
pulled pork |
3.0 |
pulled pork |
| 2 |
bacon |
12.0 |
bacon |
| 3 |
pastrami |
6.0 |
pastrami |
| 4 |
corned beef |
7.5 |
corned beef |
| 5 |
Bacon |
8.0 |
bacon |
| 6 |
Pastrami |
3.0 |
pastrami |
| 7 |
honey ham |
5.0 |
honey ham |
| 8 |
nova lox |
6.0 |
nova lox |
The map() method on a Series accepts a function or dict-like object containing a mapping.Using map() is a convenient way to perform element-wise transformations and other data cleaning related operations.
data['animal']=lowercased.map(meat_to_animal);data
|
food |
ounces |
animal |
| 0 |
bacon |
4.0 |
pig |
| 1 |
pulled pork |
3.0 |
pig |
| 2 |
bacon |
12.0 |
pig |
| 3 |
pastrami |
6.0 |
cow |
| 4 |
corned beef |
7.5 |
cow |
| 5 |
Bacon |
8.0 |
pig |
| 6 |
Pastrami |
3.0 |
cow |
| 7 |
honey ham |
5.0 |
pig |
| 8 |
nova lox |
6.0 |
salmon |
We could also have passed a function that does all the work.Such as the following:
data['food'].map(lambda x:meat_to_animal[x.lower()])
0 pig
1 pig
2 pig
3 cow
4 cow
5 pig
6 cow
7 pig
8 salmon
Name: food, dtype: object
Replacing values
data=pd.Series([1,-999,2,-999,-1000,3]);data
0 1
1 -999
2 2
3 -999
4 -1000
5 3
dtype: int64
data.replace(-999,np.nan) # Replcace one value with one value
0 1.0
1 NaN
2 2.0
3 NaN
4 -1000.0
5 3.0
dtype: float64
data.replace([-999,-1000],np.nan) # Replace multi-values with one value
0 1.0
1 NaN
2 2.0
3 NaN
4 NaN
5 3.0
dtype: float64
data.replace([-999,-1000],[np.nan,0])# Replace multi-values with multi-values
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64
data.replace({-999:np.nan,0-1000:0}) # dict can also be passed into replace method
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64
data1=pd.Series(['A','B','c',12])
help(data1.str.replace)
Help on method replace in module pandas.core.strings:
replace(pat, repl, n=-1, case=True, flags=0) method of pandas.core.strings.StringMethods instance
Replace occurrences of pattern/regex in the Series/Index with
some other string. Equivalent to :meth:`str.replace` or
:func:`re.sub`.
Parameters
----------
pat : string
Character sequence or regular expression
repl : string
Replacement sequence
n : int, default -1 (all)
Number of replacements to make from start
case : boolean, default True
If True, case sensitive
flags : int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE
Returns
-------
replaced : Series/Index of objects
Renaming Axis indexes
data=pd.DataFrame(np.arange(12).reshape((3,4)),index=['Ohio','Colorado','New York'],columns=['One','Two','three','Four']);data
|
One |
Two |
three |
Four |
| Ohio |
0 |
1 |
2 |
3 |
| Colorado |
4 |
5 |
6 |
7 |
| New York |
8 |
9 |
10 |
11 |
data.index.map(lambda x:x[:4].upper())
array(['OHIO', 'COLO', 'NEW '], dtype=object)
data
|
One |
Two |
three |
Four |
| Ohio |
0 |
1 |
2 |
3 |
| Colorado |
4 |
5 |
6 |
7 |
| New York |
8 |
9 |
10 |
11 |
data.index=data.index.map(lambda x:x[:4].upper());data # Modify DataFrame in-place
|
One |
Two |
three |
Four |
| OHIO |
0 |
1 |
2 |
3 |
| COLO |
4 |
5 |
6 |
7 |
| NEW |
8 |
9 |
10 |
11 |
If you want to create a transformed version of a dataset without modifying the original,a useful method is rename().
data
|
One |
Two |
three |
Four |
| OHIO |
0 |
1 |
2 |
3 |
| COLO |
4 |
5 |
6 |
7 |
| NEW |
8 |
9 |
10 |
11 |
data.rename(index=str.title,columns=str.upper)
|
ONE |
TWO |
THREE |
FOUR |
| Ohio |
0 |
1 |
2 |
3 |
| Colo |
4 |
5 |
6 |
7 |
| New |
8 |
9 |
10 |
11 |
data
|
One |
Two |
three |
Four |
| OHIO |
0 |
1 |
2 |
3 |
| COLO |
4 |
5 |
6 |
7 |
| NEW |
8 |
9 |
10 |
11 |
To modify dataset in-place,pass inplace=True.
data.rename(index={'OHIO':'INDIANA'},inplace=True)
data
|
One |
Two |
three |
Four |
| INDIANA |
0 |
1 |
2 |
3 |
| COLO |
4 |
5 |
6 |
7 |
| NEW |
8 |
9 |
10 |
11 |
Discretization and Binning
help(pd.cut)
Help on function cut in module pandas.tools.tile:
cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)
Return indices of half-open bins to which each value of `x` belongs.
Parameters
----------
x : array-like
Input array to be binned. It has to be 1-dimensional.
bins : int or sequence of scalars
If `bins` is an int, it defines the number of equal-width bins in the
range of `x`. However, in this case, the range of `x` is extended
by .1% on each side to include the min or max values of `x`. If
`bins` is a sequence it defines the bin edges allowing for
non-uniform bin width. No extension of the range of `x` is done in
this case.
right : bool, optional
Indicates whether the bins include the rightmost edge or not. If
right == True (the default), then the bins [1,2,3,4] indicate
(1,2], (2,3], (3,4].
labels : array or boolean, default None
Used as labels for the resulting bins. Must be of the same length as
the resulting bins. If False, return only integer indicators of the
bins.
retbins : bool, optional
Whether to return the bins or not. Can be useful if bins is given
as a scalar.
precision : int
The precision at which to store and display the bins labels
include_lowest : bool
Whether the first interval should be left-inclusive or not.
Returns
-------
out : Categorical or Series or array of integers if labels is False
The return type (Categorical or Series) depends on the input: a Series
of type category if input is a Series else Categorical. Bins are
represented as categories when categorical data is returned.
bins : ndarray of floats
Returned only if `retbins` is True.
Notes
-----
The `cut` function can be useful for going from a continuous variable to
a categorical variable. For example, `cut` could convert ages to groups
of age ranges.
Any NA values will be NA in the result. Out of bounds values will be NA in
the resulting Categorical object
Examples
--------
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
(6.533, 9.7], (0.191, 3.367]]
Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]],
array([ 0.1905 , 3.36666667, 6.53333333, 9.7 ]))
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3,
labels=["good","medium","bad"])
[good, good, good, medium, bad, good]
Categories (3, object): [good < medium < bad]
>>> pd.cut(np.ones(5), 4, labels=False)
array([1, 1, 1, 1, 1], dtype=int64)
ages=[20,22,25,27,21,23,37,31,61,45,41,32]
bins=[18,25,35,60,100]
cats=pd.cut(ages,bins)
cats
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, object): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
len(ages)
12
type(cats)
pandas.core.categorical.Categorical
cats.codes
array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)
cats.categories
Index(['(18, 25]', '(25, 35]', '(35, 60]', '(60, 100]'], dtype='object')
type(pd.value_counts(cats))
pandas.core.series.Series
help(pd.value_counts)
Help on function value_counts in module pandas.core.algorithms:
value_counts(values, sort=True, ascending=False, normalize=False, bins=None, dropna=True)
Compute a histogram of the counts of non-null values.
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
normalize: boolean, default False
If True then compute a relative histogram
bins : integer, optional
Rather than count values, group them into half-open bins,
convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN
Returns
-------
value_counts : Series
pd.value_counts([1,1,2,3,4,45,5])
1 2
5 1
45 1
4 1
3 1
2 1
dtype: int64
pd.value_counts(cats)
(18, 25] 5
(35, 60] 3
(25, 35] 3
(60, 100] 1
dtype: int64
You can also pass your bin names by passing a list or array to the labels option.
group_names=['Youth','YoungAdult','MiddleAged','Senior']
pd.cut(ages,bins,labels=group_names) # bin is a reserved key.
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
help(bin)
Help on built-in function bin in module builtins:
bin(number, /)
Return the binary representation of an integer.
>>> bin(2796202)
'0b1010101010101010101010'
bin(2)
'0b10'
bins can also be an integer, and in that case, the category will be equal-space.
data=np.random.rand(20)
pd.cut(data,4,precision=2)# precision limits the decimal precision to two digits.
[(0.25, 0.5], (0.25, 0.5], (0.25, 0.5], (0.75, 1], (0.5, 0.75], ..., (0.0024, 0.25], (0.25, 0.5], (0.25, 0.5], (0.25, 0.5], (0.0024, 0.25]]
Length: 20
Categories (4, object): [(0.0024, 0.25] < (0.25, 0.5] < (0.5, 0.75] < (0.75, 1]]
- A closely related function,
qcut,bins the data based on sample quantiles.Using cut will not usually result in each bin having the same number of data points.
data=np.random.randn(1000)
cats=pd.qcut(data,4);cats
[(0.0211, 0.689], (0.689, 3.225], (-0.62, 0.0211], (0.689, 3.225], (0.689, 3.225], ..., (0.689, 3.225], [-3.401, -0.62], (-0.62, 0.0211], (-0.62, 0.0211], (-0.62, 0.0211]]
Length: 1000
Categories (4, object): [[-3.401, -0.62] < (-0.62, 0.0211] < (0.0211, 0.689] < (0.689, 3.225]]
pd.value_counts(cats)
(0.689, 3.225] 250
(0.0211, 0.689] 250
(-0.62, 0.0211] 250
[-3.401, -0.62] 250
dtype: int64
cats1=pd.qcut(data,[0,0.1,0.5,0.9,1])
pd.value_counts(cats1)
(0.0211, 1.33] 400
(-1.201, 0.0211] 400
(1.33, 3.225] 100
[-3.401, -1.201] 100
dtype: int64
Detecting and filtering Outliers
data=pd.DataFrame(np.random.randn(1000,4))
data.describe()
|
0 |
1 |
2 |
3 |
| count |
1000.000000 |
1000.000000 |
1000.000000 |
1000.000000 |
| mean |
0.002634 |
-0.038263 |
0.001432 |
-0.040628 |
| std |
0.981600 |
0.996856 |
1.021248 |
1.030675 |
| min |
-3.400618 |
-3.427137 |
-4.309211 |
-4.375632 |
| 25% |
-0.656369 |
-0.713371 |
-0.681777 |
-0.754702 |
| 50% |
-0.005199 |
-0.026878 |
-0.019116 |
0.005450 |
| 75% |
0.649159 |
0.613807 |
0.690614 |
0.625859 |
| max |
3.408137 |
3.171119 |
3.784272 |
2.992607 |
col=data[2]
col[np.abs(col)>3]
322 3.059163
431 -3.089013
648 -4.309211
653 3.784272
834 3.007481
Name: 2, dtype: float64
help(pd.DataFrame.any)
Help on function any in module pandas.core.frame:
any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether any element is True over requested axis
Parameters
----------
axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
Returns
-------
any : Series or DataFrame (if level specified)
(abs(data)>3) ==(np.abs(data)>3)
|
0 |
1 |
2 |
3 |
| 0 |
True |
True |
True |
True |
| 1 |
True |
True |
True |
True |
| 2 |
True |
True |
True |
True |
| 3 |
True |
True |
True |
True |
| 4 |
True |
True |
True |
True |
| 5 |
True |
True |
True |
True |
| 6 |
True |
True |
True |
True |
| 7 |
True |
True |
True |
True |
| 8 |
True |
True |
True |
True |
| 9 |
True |
True |
True |
True |
| 10 |
True |
True |
True |
True |
| 11 |
True |
True |
True |
True |
| 12 |
True |
True |
True |
True |
| 13 |
True |
True |
True |
True |
| 14 |
True |
True |
True |
True |
| 15 |
True |
True |
True |
True |
| 16 |
True |
True |
True |
True |
| 17 |
True |
True |
True |
True |
| 18 |
True |
True |
True |
True |
| 19 |
True |
True |
True |
True |
| 20 |
True |
True |
True |
True |
| 21 |
True |
True |
True |
True |
| 22 |
True |
True |
True |
True |
| 23 |
True |
True |
True |
True |
| 24 |
True |
True |
True |
True |
| 25 |
True |
True |
True |
True |
| 26 |
True |
True |
True |
True |
| 27 |
True |
True |
True |
True |
| 28 |
True |
True |
True |
True |
| 29 |
True |
True |
True |
True |
| ... |
... |
... |
... |
... |
| 970 |
True |
True |
True |
True |
| 971 |
True |
True |
True |
True |
| 972 |
True |
True |
True |
True |
| 973 |
True |
True |
True |
True |
| 974 |
True |
True |
True |
True |
| 975 |
True |
True |
True |
True |
| 976 |
True |
True |
True |
True |
| 977 |
True |
True |
True |
True |
| 978 |
True |
True |
True |
True |
| 979 |
True |
True |
True |
True |
| 980 |
True |
True |
True |
True |
| 981 |
True |
True |
True |
True |
| 982 |
True |
True |
True |
True |
| 983 |
True |
True |
True |
True |
| 984 |
True |
True |
True |
True |
| 985 |
True |
True |
True |
True |
| 986 |
True |
True |
True |
True |
| 987 |
True |
True |
True |
True |
| 988 |
True |
True |
True |
True |
| 989 |
True |
True |
True |
True |
| 990 |
True |
True |
True |
True |
| 991 |
True |
True |
True |
True |
| 992 |
True |
True |
True |
True |
| 993 |
True |
True |
True |
True |
| 994 |
True |
True |
True |
True |
| 995 |
True |
True |
True |
True |
| 996 |
True |
True |
True |
True |
| 997 |
True |
True |
True |
True |
| 998 |
True |
True |
True |
True |
| 999 |
True |
True |
True |
True |
1000 rows × 4 columns
data[(np.abs(data)>3).any(1)]
|
0 |
1 |
2 |
3 |
| 59 |
-3.400618 |
0.342563 |
0.649758 |
-2.629268 |
| 274 |
1.264869 |
-3.427137 |
0.991494 |
-0.906788 |
| 322 |
2.714233 |
-1.239436 |
3.059163 |
0.318054 |
| 431 |
-0.376058 |
-0.713530 |
-3.089013 |
-0.791221 |
| 460 |
0.411801 |
-0.323974 |
0.301139 |
-3.051362 |
| 465 |
0.054043 |
-1.046532 |
2.054820 |
-4.375632 |
| 587 |
0.857067 |
-3.162763 |
0.137409 |
-1.327873 |
| 648 |
-0.323629 |
0.325867 |
-4.309211 |
-0.477572 |
| 653 |
0.171840 |
0.148702 |
3.784272 |
0.269508 |
| 678 |
0.303109 |
3.171119 |
0.854269 |
0.489537 |
| 834 |
1.651314 |
1.303992 |
3.007481 |
0.494971 |
| 841 |
3.408137 |
0.869413 |
-0.111245 |
1.306775 |
| 960 |
-0.302520 |
-3.118445 |
2.116509 |
0.003669 |
np.sign([0,0.3,-0.3,20,-90])
array([ 0., 1., -1., 1., -1.])
data[np.abs(data)>3]=np.sign(data)*3
np.sign(data)*3
|
0 |
1 |
2 |
3 |
| 0 |
-3.0 |
-3.0 |
-3.0 |
3.0 |
| 1 |
-3.0 |
3.0 |
3.0 |
-3.0 |
| 2 |
3.0 |
3.0 |
3.0 |
3.0 |
| 3 |
-3.0 |
-3.0 |
-3.0 |
-3.0 |
| 4 |
3.0 |
-3.0 |
3.0 |
-3.0 |
| 5 |
-3.0 |
-3.0 |
-3.0 |
3.0 |
| 6 |
-3.0 |
-3.0 |
3.0 |
3.0 |
| 7 |
3.0 |
3.0 |
3.0 |
3.0 |
| 8 |
-3.0 |
3.0 |
-3.0 |
3.0 |
| 9 |
3.0 |
-3.0 |
3.0 |
3.0 |
| 10 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 11 |
-3.0 |
3.0 |
3.0 |
3.0 |
| 12 |
3.0 |
3.0 |
3.0 |
3.0 |
| 13 |
3.0 |
-3.0 |
3.0 |
3.0 |
| 14 |
3.0 |
3.0 |
3.0 |
3.0 |
| 15 |
3.0 |
3.0 |
3.0 |
-3.0 |
| 16 |
3.0 |
-3.0 |
3.0 |
3.0 |
| 17 |
3.0 |
-3.0 |
-3.0 |
3.0 |
| 18 |
-3.0 |
3.0 |
3.0 |
3.0 |
| 19 |
3.0 |
3.0 |
3.0 |
-3.0 |
| 20 |
-3.0 |
3.0 |
3.0 |
3.0 |
| 21 |
3.0 |
3.0 |
-3.0 |
3.0 |
| 22 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 23 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| 24 |
3.0 |
-3.0 |
3.0 |
3.0 |
| 25 |
-3.0 |
-3.0 |
-3.0 |
3.0 |
| 26 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| 27 |
3.0 |
-3.0 |
-3.0 |
-3.0 |
| 28 |
3.0 |
-3.0 |
-3.0 |
3.0 |
| 29 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| ... |
... |
... |
... |
... |
| 970 |
-3.0 |
-3.0 |
3.0 |
-3.0 |
| 971 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 972 |
-3.0 |
3.0 |
-3.0 |
3.0 |
| 973 |
3.0 |
3.0 |
3.0 |
3.0 |
| 974 |
3.0 |
-3.0 |
-3.0 |
3.0 |
| 975 |
-3.0 |
3.0 |
-3.0 |
3.0 |
| 976 |
-3.0 |
3.0 |
3.0 |
3.0 |
| 977 |
-3.0 |
-3.0 |
3.0 |
-3.0 |
| 978 |
3.0 |
-3.0 |
-3.0 |
-3.0 |
| 979 |
-3.0 |
3.0 |
-3.0 |
3.0 |
| 980 |
-3.0 |
-3.0 |
-3.0 |
3.0 |
| 981 |
3.0 |
3.0 |
3.0 |
-3.0 |
| 982 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 983 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 984 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| 985 |
3.0 |
3.0 |
-3.0 |
3.0 |
| 986 |
-3.0 |
-3.0 |
-3.0 |
3.0 |
| 987 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 988 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| 989 |
3.0 |
-3.0 |
-3.0 |
3.0 |
| 990 |
3.0 |
-3.0 |
3.0 |
-3.0 |
| 991 |
3.0 |
-3.0 |
3.0 |
3.0 |
| 992 |
-3.0 |
3.0 |
-3.0 |
-3.0 |
| 993 |
-3.0 |
3.0 |
-3.0 |
3.0 |
| 994 |
3.0 |
-3.0 |
-3.0 |
-3.0 |
| 995 |
3.0 |
-3.0 |
-3.0 |
-3.0 |
| 996 |
3.0 |
-3.0 |
3.0 |
-3.0 |
| 997 |
-3.0 |
-3.0 |
-3.0 |
-3.0 |
| 998 |
3.0 |
3.0 |
-3.0 |
-3.0 |
| 999 |
3.0 |
3.0 |
3.0 |
-3.0 |
1000 rows × 4 columns
data
|
0 |
1 |
2 |
3 |
| 0 |
-0.564062 |
-0.887969 |
-0.854782 |
0.107613 |
| 1 |
-1.364165 |
1.337851 |
1.671698 |
-0.814129 |
| 2 |
0.765877 |
1.916774 |
0.441002 |
2.128419 |
| 3 |
-0.581957 |
-1.024641 |
-1.983024 |
-2.757392 |
| 4 |
0.778034 |
-1.375845 |
0.044277 |
-1.037062 |
| 5 |
-0.796683 |
-0.540663 |
-0.120198 |
0.003503 |
| 6 |
-0.708554 |
-0.105414 |
1.037527 |
0.826310 |
| 7 |
1.233856 |
1.217529 |
1.097430 |
0.842746 |
| 8 |
-0.201433 |
0.249823 |
-1.620147 |
0.436595 |
| 9 |
1.328493 |
-0.396323 |
1.927629 |
1.615656 |
| 10 |
-0.560207 |
0.252996 |
-0.151543 |
-0.667813 |
| 11 |
-1.729057 |
1.144087 |
1.087689 |
0.520086 |
| 12 |
0.704758 |
1.707940 |
0.720834 |
0.447245 |
| 13 |
1.024834 |
-0.217376 |
1.340304 |
0.176801 |
| 14 |
0.075745 |
1.430761 |
0.193627 |
0.191701 |
| 15 |
0.536566 |
0.047559 |
1.715175 |
-1.115074 |
| 16 |
2.803965 |
-0.465377 |
1.127140 |
1.417856 |
| 17 |
0.677525 |
-1.091631 |
-0.572231 |
0.241533 |
| 18 |
-1.172228 |
1.049830 |
0.266288 |
0.836902 |
| 19 |
0.930699 |
0.379891 |
1.637741 |
-1.770379 |
| 20 |
-0.749769 |
0.711326 |
1.591292 |
1.099071 |
| 21 |
1.550585 |
1.276488 |
-0.214484 |
0.195340 |
| 22 |
-0.289236 |
1.882439 |
-0.275263 |
-0.247316 |
| 23 |
0.688167 |
0.357913 |
-1.675828 |
-0.305840 |
| 24 |
1.255532 |
-1.802804 |
0.889900 |
0.864982 |
| 25 |
-1.391447 |
-0.291022 |
-0.190022 |
0.540653 |
| 26 |
0.435101 |
2.444416 |
-1.235937 |
-0.428450 |
| 27 |
0.165456 |
-1.091942 |
-1.560662 |
-0.739435 |
| 28 |
1.469728 |
-0.123806 |
-2.071746 |
2.574603 |
| 29 |
1.287949 |
1.278130 |
-0.825906 |
-1.852465 |
| ... |
... |
... |
... |
... |
| 970 |
-0.379102 |
-0.778606 |
2.213794 |
-0.062573 |
| 971 |
-1.108557 |
0.723650 |
-2.436704 |
-0.068733 |
| 972 |
-0.518995 |
0.455508 |
-0.217321 |
1.363977 |
| 973 |
0.444636 |
1.625221 |
0.222103 |
1.236397 |
| 974 |
0.699354 |
-2.076747 |
-0.454499 |
0.383902 |
| 975 |
-1.759718 |
0.717117 |
-0.077413 |
1.698893 |
| 976 |
-1.230778 |
0.222673 |
0.151731 |
0.174875 |
| 977 |
-0.575290 |
-0.316810 |
0.380077 |
-0.048428 |
| 978 |
1.906133 |
-0.861802 |
-0.026937 |
-2.865641 |
| 979 |
-0.134489 |
0.607949 |
-0.821089 |
0.831827 |
| 980 |
-0.058894 |
-0.707492 |
-0.273980 |
0.129724 |
| 981 |
2.288519 |
0.149683 |
0.580679 |
-0.055218 |
| 982 |
-0.280748 |
0.861358 |
-0.254339 |
-0.596723 |
| 983 |
-1.322965 |
0.323534 |
-0.585862 |
-1.316894 |
| 984 |
0.793711 |
0.165646 |
-0.212855 |
-1.752453 |
| 985 |
0.310908 |
0.758156 |
-0.040923 |
0.538293 |
| 986 |
-0.589173 |
-1.688947 |
-0.501485 |
0.019880 |
| 987 |
-0.111807 |
1.007026 |
-0.853133 |
-0.249211 |
| 988 |
0.601993 |
0.690953 |
-1.168277 |
-0.516737 |
| 989 |
1.319895 |
-0.046141 |
-0.680194 |
1.443361 |
| 990 |
1.839785 |
-0.480675 |
0.056481 |
-0.097993 |
| 991 |
2.590916 |
-0.367057 |
1.110105 |
0.130826 |
| 992 |
-0.108846 |
1.717209 |
-0.580895 |
-0.985869 |
| 993 |
-1.152810 |
0.390732 |
-0.104866 |
1.553947 |
| 994 |
1.721177 |
-0.088994 |
-0.565308 |
-1.602808 |
| 995 |
0.922409 |
-0.027923 |
-1.258001 |
-1.933848 |
| 996 |
0.647699 |
-0.089378 |
1.455509 |
-0.598519 |
| 997 |
-1.590236 |
-0.544202 |
-0.764923 |
-0.329425 |
| 998 |
0.969542 |
0.106538 |
-0.188919 |
-1.474017 |
| 999 |
0.235337 |
0.232514 |
0.113181 |
-1.403455 |
1000 rows × 4 columns
np.sign(data).head(10) # return the first 10 rows.
|
0 |
1 |
2 |
3 |
| 0 |
-1.0 |
-1.0 |
-1.0 |
1.0 |
| 1 |
-1.0 |
1.0 |
1.0 |
-1.0 |
| 2 |
1.0 |
1.0 |
1.0 |
1.0 |
| 3 |
-1.0 |
-1.0 |
-1.0 |
-1.0 |
| 4 |
1.0 |
-1.0 |
1.0 |
-1.0 |
| 5 |
-1.0 |
-1.0 |
-1.0 |
1.0 |
| 6 |
-1.0 |
-1.0 |
1.0 |
1.0 |
| 7 |
1.0 |
1.0 |
1.0 |
1.0 |
| 8 |
-1.0 |
1.0 |
-1.0 |
1.0 |
| 9 |
1.0 |
-1.0 |
1.0 |
1.0 |
Permutation and random sample
df=pd.DataFrame(np.arange(20).reshape((5,4)))
sampler=np.random.permutation(5);sampler
array([4, 3, 1, 2, 0])
df.take(sampler)
|
0 |
1 |
2 |
3 |
| 4 |
16 |
17 |
18 |
19 |
| 3 |
12 |
13 |
14 |
15 |
| 1 |
4 |
5 |
6 |
7 |
| 2 |
8 |
9 |
10 |
11 |
| 0 |
0 |
1 |
2 |
3 |
df.sample(n=4)
|
0 |
1 |
2 |
3 |
| 2 |
8 |
9 |
10 |
11 |
| 0 |
0 |
1 |
2 |
3 |
| 1 |
4 |
5 |
6 |
7 |
| 4 |
16 |
17 |
18 |
19 |
df.sample(n=10,replace=True) # replace allows repeat choices.
|
0 |
1 |
2 |
3 |
| 1 |
4 |
5 |
6 |
7 |
| 2 |
8 |
9 |
10 |
11 |
| 1 |
4 |
5 |
6 |
7 |
| 2 |
8 |
9 |
10 |
11 |
| 0 |
0 |
1 |
2 |
3 |
| 3 |
12 |
13 |
14 |
15 |
| 3 |
12 |
13 |
14 |
15 |
| 2 |
8 |
9 |
10 |
11 |
| 0 |
0 |
1 |
2 |
3 |
| 4 |
16 |
17 |
18 |
19 |
choices=pd.Series([5,7,-1,6,4])
choices.sample(n=10,replace=True)
2 -1
4 4
1 7
0 5
0 5
3 6
4 4
2 -1
1 7
1 7
dtype: int64
Computing indicator/Dummy variables
df=pd.DataFrame({'Key':['b','b','a','c','a','b'],'data1':range(6)});df
|
Key |
data1 |
| 0 |
b |
0 |
| 1 |
b |
1 |
| 2 |
a |
2 |
| 3 |
c |
3 |
| 4 |
a |
4 |
| 5 |
b |
5 |
pd.get_dummies(df['Key'])
|
a |
b |
c |
| 0 |
0 |
1 |
0 |
| 1 |
0 |
1 |
0 |
| 2 |
1 |
0 |
0 |
| 3 |
0 |
0 |
1 |
| 4 |
1 |
0 |
0 |
| 5 |
0 |
1 |
0 |
pd.get_dummies(df['Key'],prefix='key')
|
key_a |
key_b |
key_c |
| 0 |
0 |
1 |
0 |
| 1 |
0 |
1 |
0 |
| 2 |
1 |
0 |
0 |
| 3 |
0 |
0 |
1 |
| 4 |
1 |
0 |
0 |
| 5 |
0 |
1 |
0 |
df[['data1']]
|
data1 |
| 0 |
0 |
| 1 |
1 |
| 2 |
2 |
| 3 |
3 |
| 4 |
4 |
| 5 |
5 |
df['data1']
0 0
1 1
2 2
3 3
4 4
5 5
Name: data1, dtype: int32
- so the difference between df[['data1']] and df['data1'] is apparent, the former one returns DataFrame,the latter one returns Series.
- [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn
In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...
- [Machine Learning with Python] Data Preparation through Transformation Pipeline
In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...
- 机器学习- Sklearn (交叉验证和Pipeline)
前面一节咱们已经介绍了决策树的原理已经在sklearn中的应用.那么这里还有两个数据处理和sklearn应用中的小知识点咱们还没有讲,但是在实践中却会经常要用到的,那就是交叉验证cross_valid ...
- Pandas的Categorical Data
http://liao.cpython.org/pandas15/ Docs » Pandas的Categorical Data类型 15. Pandas的Categorical Data panda ...
- 【Repost】A Practical Intro to Data Science
Are you a interested in taking a course with us? Learn about our programs or contact us at hello@zip ...
- A Complete Tutorial to Learn Data Science with Python from Scratch
A Complete Tutorial to Learn Data Science with Python from Scratch Introduction It happened few year ...
- pandas 之 字符串处理
import numpy as np import pandas as pd Python has long been a popular raw data manipulation language ...
- pandas 之 数据清洗-缺失值
Abstract During the course fo doing data analysis and modeling, a significant amount of time is spen ...
- 数据分析06-五个pandas可视化项目
数据分析-06 数据分析-06 pandas可视化 基本绘图 Series数据可视化 DataFrame数据可视化 高级绘图 代码总结 pandas可视化 基本绘图 pandas高级绘图 pandas ...
- Why Apache Spark is a Crossover Hit for Data Scientists [FWD]
Spark is a compelling multi-purpose platform for use cases that span investigative, as well as opera ...
随机推荐
- MySQL - [20] 事务
题记部分 一.什么是ACID (1)Atomicity 原子性 某个操作,要么全部执行完毕,要么全部回滚. (2)Consistency 一致性 数据库中的数据全都符合现实世界中的约束,则这些数据就符 ...
- Flume - [08] 绝密档案Ⅰ
题记部分 (1)Flume使用场景 线上数据一般主要是落地(存储到磁盘)或者通过socket传输给另一个系统,这种情况下,你很难推动线上应用或服务去修改接口,实现直接向kafka里写数据,这时候你 ...
- gitlab - [01] 概述
gitlab! 一.GitLab是什么 GitLab是一个集成了Git仓库管理.持续集成(CI/CD).项目管理.代码审查.包管理和发布在内的全方位DevOps平台.它为软件开发团队提供了从项目规划到 ...
- Python基础-Python操作word、面向对象
今日概要: 第三方模块 -- word 面向对象 1 Word格式-第三方模块 自定义模块 内置模块 第三方模块 requests bs4 openpyxl python-docx 1.1 快速上手 ...
- 130道基础OJ编程题之: 68~77
130道基础OJ编程题之: 68~77 @ 目录 130道基础OJ编程题之: 68~77 68:BC72 平均身高 69:BC74 HTTP状态码 70:BC75 数字三角形 71:BC76 公务员面 ...
- mac上 Kratos 配置 protoc
前言 protoc 是 protobuf 文件(.proto)的编译器,可以借助这个工具把 .proto 文件转译成各种编程语言对应的源码,包含数据类型定义.调用接口等. protoc 在设计上把 p ...
- centos操作collection
Centos修改IP地址 https://blog.csdn.net/weixin_45193791/article/details/124646170 Centos打开.修改.保存文件 https: ...
- Windows 终端远程连接 Ubuntu
博客地址:https://www.cnblogs.com/zylyehuo/ 查看 ip 的方式参考以下链接 Ubuntu 下查看 ip - zylyehuo - 博客园 在 windows 终端中执 ...
- 【Guava工具类】Strings&Ints
String相关工具 Strings Guava 提供了一系列用于字符串处理的工具: 对字符串为null或空的处理 nullToEmpty(@Nullable String string):如果非空, ...
- 再谈MCP协议,看看 MCP 是如何重塑 AI 与外部数据源互动的能力?
Techscribe Central 缩略图由 Techscribe Central 制作和编辑 MCP!!是不是一头雾水?我当时也是这个反应.我也是最近才听说它开始引发关注,然后我发现大多数人根本不 ...