基于ROS的运动识别
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image
import cv_bridge class MotionDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup) # 创建cv_bridge
self.bridge = cv_bridge.CvBridge()
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.image_callback, queue_size=1) # 设置参数:最小区域、阈值
self.minArea = rospy.get_param("~minArea", 500)
self.threshold = rospy.get_param("~threshold", 25) self.firstFrame = None
self.text = "Unoccupied" def image_callback(self, data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
frame = np.array(cv_image, dtype=np.uint8) # 创建灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0) # 使用两帧图像做比较,检测移动物体的区域
if self.firstFrame is None:
self.firstFrame = gray
return
frameDelta = cv2.absdiff(self.firstFrame, gray)
thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2)
# binary, cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in cnts:
# 如果检测到的区域小于设置值,则忽略
if cv2.contourArea(c) < self.minArea:
continue # 在输出画面上框出识别到的物体
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2)
self.text = "Occupied" # 在输出画面上打当前状态和时间戳信息
cv2.putText(frame, "Status: {}".format(self.text), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) # 将识别后的图像转换成ROS消息并发布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8")) def cleanup(self):
print("强制结束程序。。。")
cv2.destroyAllWindows() if __name__ == '__main__':
try:
# 初始化ros节点
rospy.init_node("motion_detector")
rospy.loginfo("运动检测程序启动。。。")
rospy.loginfo("请打开opencv节点订阅消息。。。")
MotionDetector()
rospy.spin()
except KeyboardInterrupt:
print("强制结束程序。。。")
cv2.destroyAllWindows()
基于ROS的运动识别的更多相关文章
- 基于ROS的人脸识别
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy import cv2 import numpy as np from sensor ...
- 基于FPGA的数字识别的实现
欢迎大家关注我的微信公众号:FPGA开源工作室 基于FPGA的数字识别的实现二 作者:lee神 1 背景知识 1.1基于FPGA的数字识别的方法 通常,针对印刷体数字识别使用的算法有:基于模版 ...
- 基于Python使用SVM识别简单的字符验证码的完整代码开源分享
关键字:Python,SVM,字符验证码,机器学习,验证码识别 1 概述 基于Python使用SVM识别简单的验证字符串的完整代码开源分享. 因为目前有了更厉害的新技术来解决这类问题了,但是本文作 ...
- 基于FPGA的肤色识别算法实现
大家好,给大家介绍一下,这是基于FPGA的肤色识别算法实现. 我们今天这篇文章有两个内容一是实现基于FPGA的彩色图片转灰度实现,然后在这个基础上实现基于FPGA的肤色检测算法实现. 将彩色图像转化为 ...
- 基于MATLAB的人脸识别算法的研究
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...
- 基于ROS的分布式机器人远程控制平台
基于ROS的分布式机器人远程控制平台 1 结构说明 HiBot架构主要使用C/S架构,其中HibotServer为服务器,Muqutte为消息服务器中间件,HiBotClient为运行在机器人上的 ...
- 【文智背后的奥秘】系列篇——基于CRF的人名识别
版权声明:本文由文智原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/133 来源:腾云阁 https://www.qclou ...
- 基于 OpenCV 的人脸识别
基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...
- 基于 HTML5 的人脸识别技术
基于 HTML5 的人脸识别技术 https://github.com/auduno/headtrackr/
随机推荐
- python经常使用的十进制、16进制、字符串、字节串之间的转换(长期更新帖)
进行协议解析时.总是会遇到各种各样的数据转换的问题,从二进制到十进制,从字节串到整数等等 废话不多上.直接上样例 整数之间的进制转换: 10进制转16进制: hex(16) ==> 0x10 ...
- Python通过简单的文件读写,来实现注册登录
# -*- coding:utf-8 -*- '''''' username = input('请输入您的姓名:') password = input('请输入密码:') with open('get ...
- mysql千万级数据量查询出所有重复的记录
查询重复的字段需要创建索引,多个条件则创建组合索引,各个条件的索引都存在则不必须创建组合索引 有些情况直接使用GROUP BY HAVING则能直接解决:但是有些情况下查询缓慢,则需要使用下面其他的方 ...
- Python 学习笔记7 条件语句 If
Python中条件语句if 是通过一条或者多条的执行语句的结果,来判断是否执行其包含的代码块. 通常会配合else.elif一起使用,达到根据条件进行多个代码块的执行操作. 简单的if score = ...
- Express全系列教程之(四):获取Post参数的两种方式
一.关于POST请求 post方法作为http请求很重要的一部分,几乎所有的网站都有用到它,与get不同,post请求更像是在服务器上做修改操作,它一般用于数据资源的更新.相比于get请求,post所 ...
- Sessions Hang on row cache lock
Sessions Hang on "row cache lock" (dc_objects) While Creating & Dropping a Table Concu ...
- list的基本操作实现
有关list的相关实现,主函数没有写很多,每个部分目前没发现有问题: #include <iostream> #include <stdio.h> using namespac ...
- 异步请求取得json数据
一.异步请求 在之前我们请求数据的时候都是整个页面全部刷新了一次,也就是每次请求都会重新请求所有的资源.但是在很多时候不需要页面全部刷新,仅仅是需要页面的局部数据刷新即可,此时需要发送异步请求来实现这 ...
- Log print(Android)
Log.v("MyTag", "This is Verbose."); Log.d("MyTag", "This i ...
- win10家庭版删除文件提示没有权限最简单的方式
1.cmd 2.右键-以管理员身份运行(重要) 3.输入:net user administrator /active:yes,开启超级管理员账号 4.win+r键打开运行对话框,输入 netplwi ...