PolandBall and Gifts

转换成置换群后, 对于最大值我们很好处理。

对于最小值, 只跟若干个圈能否刚好组能 k 有关。

最直观的想法就是bitset优化背包, 直接搞肯定T掉。

我们能再发掘一些性质, 就是本质不能的圈的大小最多有sqrt(n)个,

因为1 + 2 + 3 ... + n = (n + 1) * n / 2

所以对于每个不同的数二进制优化一下就可以过啦。

感觉这种题就很有意思。。

#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n, k, p[N], c[N], num[N], cnt;
bool vis[N];
bitset<> dp;
vector<int> oo; int main() {
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++) scanf("%d", &p[i]);
for(int i = ; i <= n; i++) {
if(vis[i]) continue;
int u = i; cnt++;
while(!vis[u]) {
vis[u] = true;
c[cnt]++;
u = p[u];
}
}
int one = , two = ;
for(int i = ; i <= cnt; i++)
(c[i] & ) ? one++, two += c[i] / : two += c[i] / ;
int mnans = , mxans = ;
if(two >= k) mxans = * k;
else {
mxans += two * + (k - two);
chkmin(mxans, n);
}
dp[] = ;
for(int i = ; i <= n; i++) oo.push_back(c[i]);
sort(ALL(oo)); oo.erase(unique(ALL(oo)), oo.end());
for(int i = ; i <= n; i++) num[lower_bound(ALL(oo), c[i]) - oo.begin()]++;
for(int i = ; i < SZ(oo); i++) {
for(int j = ; ( << j) <= num[i]; j++) {
int val = ( << j) * oo[i];
num[i] -= << j;
dp |= dp << val;
}
if(num[i]) {
int val = num[i] * oo[i];
dp |= dp << val;
}
}
mnans = dp[k] ? k : k + ;
printf("%d %d\n", mnans, mxans);
return ;
} /*
*/

Codeforces 755F PolandBall and Gifts bitset + 二进制优化多重背包的更多相关文章

  1. poj1014二进制优化多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53029   Accepted: 13506 Descri ...

  2. 51nod 1086 背包问题 V2(二进制优化多重背包)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1086 题解:怎么用二进制优化多重背包,举一个例子就明白了. ...

  3. POJ - 1276 二进制优化多重背包为01背包

    题意:直接说数据,735是目标值,然后3是后面有三种钱币,四张125的,六张五块的和三张350的. 思路:能够轻易的看出这是一个多重背包问题,735是背包的容量,那些钱币是物品,而且有一定的数量,是多 ...

  4. [Bzoj 1192][HNOI2006]鬼谷子的钱袋(二进制优化多重背包)

    (人生第一篇bzoj题解有点激动 首先介绍一下题目: 看它题目那么长,其实意思就是给定一个数a,求将其拆分成n个数,通过这n个数可以表示出1~a中所有数的方案中,求最小的n. 您看懂了嘛?不懂咱来举个 ...

  5. BZOJ 1531 二进制优化多重背包

    思路: 讲道理我应该写单调队列优化多重背包的 但是我不会啊 但是我现在! 还不会啊 我就写了个二进制优化的.. 过了 //By SiriusRen #include <cstdio> #i ...

  6. 【二进制优化-多重背包】zznu-oj-2120 : 安详--如何用尽钱币打赏主播获得最大好感度

    2120 : 安详 题目描述 spring最近喜欢上了B站新秀主播,身为顿顿吃黄焖鸡的土豪,当然要过去打赏一番,但是spring还是喜欢精打细算,所以在打赏的时候,想要掏出有限的钱,获得主播的最大好感 ...

  7. poj 1742 Coins(二进制优化多重背包)

    传送门 解题思路 多重背包,二进制优化.就是把每个物品拆分成一堆连续的\(2\)的幂加起来的形式,然后把最后剩下的也当成一个元素.直接类似\(0/1\)背包的跑就行了,时间复杂度\(O(nmlogc) ...

  8. [tyvj-1194]划分大理石 二进制优化多重背包

    突然发现这个自己还不会... 其实也不难,就和快速幂感觉很像,把物品数量二进制拆分一下,01背包即可 我是咸鱼 #include <cstdio> #include <cstring ...

  9. [POJ1014]Dividing(二进制优化多重背包)

    #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int ...

随机推荐

  1. MySQL报错: SQLSTATE[HY000]: General error: 1030 Got error 28 from storage engine

    执行命令:df -h [root@iZ25z6qcmrhZ ~]# df -hFilesystem Size Used Avail Use% Mounted on/dev/xvda1 40G 38G ...

  2. kubernetes 将pod运行在某些特定的节点上,给节点打标签

    给节点打上标签: kubectl label node  <node_name> GPU=true   #打上标签 GPU=true 在创建pod的yaml文件时:  添加 nodeSel ...

  3. MYSQL实战-------丁奇(极客时间)学习笔记

    1.基础架构:一条sql查询语句是如何执行的? mysql> select * from T where ID=10: 2.基础架构:一条sql更新语句是如何执行的? mysql> upd ...

  4. 2.7 json 模块

  5. Luogu P2057 [SHOI2007]善意的投票

    题目链接 \(Click\) \(Here\) 考虑模型转换.变成文理分科二选一带收益模型,就一波带走了. 如果没有见过这个模型的话,这里讲的很详细. #include <bits/stdc++ ...

  6. Linux设备树(六 memory&chosen节点)

    六 memory&chosen节点 根节点那一节我们说过,最简单的设备树也必须包含cpus节点和memory节点.memory节点用来描述硬件内存布局的.如果有多块内存,既可以通过多个memo ...

  7. busybox(四)完善

    目录 busybox(四)完善 proc挂载 手动挂载 proc解析 使用脚本自动挂载 使用mount-a挂载 udev/mdev 挂载 使用jffs2 文件系统格式 安装zlib 安装jffs2 生 ...

  8. Kubernetes之Deployment控制器

    Deployment 简介 deployment 是用来管理无状态应用的,面向的集群的管理,而不是面向的是一个不可变的个体,举例:有一群鸭子,要吃掉一个,只需要再放一个新的鸭仔就好了,不会影响什么,而 ...

  9. 跨站请求伪造 | ajax

    一.简介 django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewMiddleware 来完成.而对于django中设置防跨站请求伪造功 ...

  10. SpringBoot系列: 使用 Swagger 生成 API 文档

    SpringBoot非常适合开发 Restful API程序, 我们都知道为API文档非常重要, 但要维护好难度也很大, 原因有: 1. API文档如何能被方便地找到? 以文件的形式编写API文档都有 ...