<?php

class Document
{
protected $words;
protected $tf_matrix;
protected $tfidf_matrix;
public function __construct($string)
{
$this->tfidf_matrix = null;
if (isset($string))
{
$string = strtolower($string);
$this->words = preg_split('/((^\p{P}+)|(\p{P}*\s+\p{P}*)|(\p{P}+$))/', $string, -1, PREG_SPLIT_NO_EMPTY);
$this->build_tf();
}
else
{
$this->words = null;
$this->tf_matrix = null;
}
}
public function build_tf()
{
if (isset($this->tf_matrix) && $this->tf_matrix)
return ;
$this->tfidf_matrix = null;
$words_count = count($this->words);
$words_occ = array_count_values($this->words);
foreach ($words_occ as $word => $amount)
$this->tf_matrix[$word] = $amount / $words_count;
arsort($this->tf_matrix);
}
public function build_tfidf($idf)
{
if (isset($this->tfidf_matrix) && $this->tfidf_matrix)
return true;
if (!isset($this->tf_matrix) || !$this->tf_matrix)
return false;
if (!isset($idf) || !$idf)
return false; if(is_array($idf)){
foreach ($this->tf_matrix as $word => $word_tf){
$this->tfidf_matrix[$word] = $word_tf * $idf[$word];
} }else{
foreach ($this->tf_matrix as $word => $word_tf){
$this->tfidf_matrix[$word] = $word_tf * $idf;
}
}
arsort($this->tfidf_matrix);
return true;
}
public function getWords()
{
return ($this->words);
}
public function getTf()
{
return ($this->tf_matrix);
}
public function getTfidf()
{
return ($this->tfidf_matrix);
}
} /*
第一步,计算词频。
考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。 第二步,计算逆文档频率。
这时,需要一个语料库(corpus),用来模拟语言的使用环境。
如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。 第三步,计算TF-IDF。
可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。
*/
$text = 'i very good, ha , i very nice, i is good'; $obj = new Document($text);
$obj->build_tf(); //词频率TF,一般是词出现次数/总词数 $idf = log(3 / 2); //逆文档频率,总文档数/包含该词的文档数
$obj->build_tfidf($idf); //越高则频率高
var_dump($obj->getWords(), 88, $obj->getTf(), 99, $obj->getTfidf());

http://www.ruanyifeng.com/blog/2013/03/tf-idf.html

TF-IDF 提取关键词的更多相关文章

  1. TF-IDF与余弦类似性的应用(一):自己主动提取关键词

    作者: 阮一峰 日期: 2013年3月15日 原文链接:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html 这个标题看上去好像非常复杂,事实上我要谈的 ...

  2. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  3. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  4. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  5. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  6. 使用solr的函数查询,并获取tf*idf值

    1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func ...

  7. TextRank算法提取关键词的Java实现

    转载:码农场 » TextRank算法提取关键词的Java实现 谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好. TextRank是在 G ...

  8. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  9. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  10. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

随机推荐

  1. jsp的环境搭建

    JSP : 动态网页 一.静态和动态的区别: 1.是否会随着时间.地点.用户操作的改变而改变. 2.动态网页需要使用服务器端的脚本语言(JSP) 二.BS CS 1.CS:QQ.微信.CS游戏. 缺点 ...

  2. EM(Expectation Maximization )

    概括 看李航老师的<统计学习方法>知道,EM是一个对于有隐含随机变量的概率模型的参数的估计方法,它是一种无监督的算法. 只是有些重要的点并没有给出, 比如没有三硬币例子中直接给出的 u(z ...

  3. python 录入姓名和成绩, 并且求平均值

    lst = []while 1: a = input("请输入学生的姓名和成绩(姓名_成绩), 输入Q退出录入:") if a.upper() == "Q": ...

  4. LeetCode 5 最长对称串

    LeetCode 5 最长对称串 最早时候做这道题的时候还是用Java写的,用的是字符串匹配的思路,一直Time Limit Exceeded.甚至还想过用KMP开优化子串查找. public cla ...

  5. 与图论的邂逅03:Lengauer-Tarjan

    回想一下,当我们在肝无向图连通性时,我们会遇到一个神奇的点——它叫割点.假设现在有一个无向图,它有一个割点,也就是说把割点删了之后图会分成两个联通块A,B.设点u∈A,v∈B,在原图中他们能够互相到达 ...

  6. 61.H5---利用canvas+原生js进行鼠标跟随绘图

    <!doctype html><html lang="en"><head> <meta charset="UTF-8" ...

  7. php爬虫入门

    本篇文章介绍PHP抓取网页内容技术,利用PHP cURL扩展获取网页内容,还可以抓取网页头部,设置cookie,处理302跳转. 一.cURL安装 采用源码安装PHP时,需要在configure时添加 ...

  8. PHP----------支付宝支付的一些注意事项。该博客只适用于20180209之后,的app支付宝支付。

    1.签名方式: 2.设置应用公钥.也就是开发者公钥.

  9. mac下mysql安装及配置启动

    ---恢复内容开始--- 原始链接:https://segmentfault.com/q/1010000000475470 按照如下方法成功安装并启动: mysql.server start//启动服 ...

  10. PostgreSQL 9.5.x的架构图及外存图