思路

调了半天发现ln忘了清空数组了。。。

就是这个式子

\[A^k(x) \equiv e^{k{\ln (A(x)) }}
\]

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 300000;
const int G = 3;
const int invG = 332748118;
const int MOD = 998244353;
int rev[MAXN],inv_val[MAXN];
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void cal_rev(int *rev,int n,int lim){
for(int i=0;i<n;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1));
}
void NTT(int *a,int opt,int n,int lim){
for(int i=0;i<n;++i)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a[k+len]*arr)%MOD;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN=pow(n,MOD-2);
for(int i=0;i<n;++i)
a[i]=(1LL*a[i]*invN)%MOD;
}
}
void mul(int *a,int *b,int &at,int bt){
static int tmp1[MAXN];
int num=(at+bt),n=1,lim=0;
while(n<=(num+2))
n<<=1,lim++;
for(int i=0;i<n;++i)
tmp1[i]=b[i];
cal_rev(rev,n,lim);
NTT(a,1,n,lim);
NTT(tmp1,1,n,lim);
for(int i=0;i<n;++i)
a[i]=(1LL*a[i]*tmp1[i])%MOD;
NTT(a,0,n,lim);
at=num;
}
void inv(int *a,int *b,int dep,int &midlen,int &midlim){
if(dep==1){
b[0]=pow(a[0],MOD-2);
return;
}
inv(a,b,(dep+1)>>1,midlen,midlim);
static int tmp[MAXN];
while((dep<<1)>midlen)
midlen<<=1,midlim++;
for(int i=0;i<dep;++i)
tmp[i]=a[i];
for(int i=dep;i<midlen;++i)
tmp[i]=0;
cal_rev(rev,midlen,midlim);
NTT(tmp,1,midlen,midlim);
NTT(b,1,midlen,midlim);
for(int i=0;i<midlen;++i)
b[i]=1LL*b[i]*(2-1LL*tmp[i]*b[i]%MOD+MOD)%MOD;
NTT(b,0,midlen,midlim);
for(int i=dep;i<midlen;++i)
b[i]=0;
}
void qd(int *a,int &at){
for(int i=0;i<at;++i)
a[i]=(1LL*a[i+1]*(i+1))%MOD;
a[at]=0;
at--;
}
void jf(int *a,int &at){
at++;
for(int i=at;i>=1;i--)
a[i]=(1LL*a[i-1]*inv_val[i])%MOD;
a[0]=0;
}
void ln(int *a,int *b,int &at){
static int tmp[MAXN];
int midlen=1,midlim=0,tmpt=at,bt=at;
for(int i=0;i<=at;++i)
tmp[i]=a[i];
inv(a,b,at+1,midlen,midlim);
qd(tmp,tmpt);
mul(b,tmp,at,tmpt);
jf(b,tmpt);
for(int i=0;i<=bt;i++)
tmp[i]=0;
for(int i=bt+1;i<=at;++i)
tmp[i]=0,b[i]=0;
at=bt;
}
void exp(int *a,int *b,int dep){
if(dep==1){
b[0]=1;
return;
}
exp(a,b,(dep+1)>>1);
static int tmp1[MAXN];
for(int i=0;i<dep;++i)
tmp1[i]=0;
ln(b,tmp1,dep);
for(int i=0;i<dep;++i)
tmp1[i]=(a[i]-tmp1[i]+MOD)%MOD;
tmp1[0]+=1;
int midlen=dep-1;
mul(b,tmp1,midlen,dep-1);
for(int i=dep;i<midlen;++i)
b[i]=0;
}
void init_inv(int n){
inv_val[0]=0;
inv_val[1]=1;
for(int i=2;i<=n;i++)
inv_val[i]=1LL*(MOD-MOD/i)*inv_val[MOD%i]%MOD;
}
void mul(int *a,int n,int k){
for(int i=0;i<=n;i++)
a[i]=(1LL*a[i]*k)%MOD;
}
void pow(int *a,int *b,int n,int k){
static int tmp[MAXN];
int t=n;
ln(a,tmp,t);
mul(tmp,n,k);
exp(tmp,b,n);
}
int a[MAXN],b[MAXN],n,k;
int main(){
scanf("%d",&n);
init_inv(n+10);
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
while(c>='0'&&c<='9'){
k=(1LL*k*10%MOD+c-'0')%MOD;
c=getchar();
}
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
pow(a,b,n,k);
for(int i=0;i<n;++i)
printf("%d ",b[i]);
return 0;
}

P5245 【模板】多项式快速幂的更多相关文章

  1. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  2. [SDOI2015]序列统计(多项式快速幂)

    题目描述 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问 ...

  3. 【xsy2479】counting 生成函数+多项式快速幂

    题目大意:在字符集大小为$m$的情况下,有多少种构造长度为$n$的字符串$s$的方案,使得$C(s)=k$.其中$C(s)$表示字符串$s$中出现次数最多的字符的出现次数. 对$998244353$取 ...

  4. 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演

    这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...

  5. BZOJ3645: Maze(FFT多项式快速幂)

    Description 众维拉先后在中土大陆上创造了精灵.人类以及矮人,其中矮人是生性喜好常年居住在地下的洞穴的存在,他们挖掘矿物甚至宝石,甚至用他们的勤劳勇敢智慧在地底下创造出了辉煌宏大的宫殿,错综 ...

  6. AtCoder AGC019E Shuffle and Swap (DP、FFT、多项式求逆、多项式快速幂)

    题目链接 https://atcoder.jp/contests/agc019/tasks/agc019_e 题解 tourist的神仙E题啊做不来做不来--这题我好像想歪了啊= =-- 首先我们可以 ...

  7. luoguP5219 无聊的水题 I 多项式快速幂

    有一个幼儿园容斥:最大次数恰好为 $m=$  最大次数最多为 $m$ - 最大次数最多为 $m-1$. 然后来一个多项式快速幂就好了. code: #include <cmath> #in ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  9. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  10. 洛谷 P1226 【模板】快速幂||取余运算 题解

    Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*= ...

随机推荐

  1. vue解决前后端跨域问题

    1/在config中index.js中 找到proxyTable在里面添加如下代码 proxyTable: { '/api': { target: 'https://api.douban.com/v2 ...

  2. Linux升级python3之后yum不能正常使用解决方法一:重新配置yum源

    [转]linux下yum安装及配置 分步阅读 公司使用的是linux搭建服务器,linux安装软件能够使用yum安装依赖包是一件非常简单而幸福的事情,所以这里简单介绍一下linux安装yum源流程和操 ...

  3. 【java.sql.SQLException: Before start of result set】

    将ResultSet转换为 Map<String,String>时抛出了一个这样的异常:java.sql.SQLException: Before start of result set ...

  4. 加壳软件-Virbox Protector Standalone

    Virbox Protector Standalone 加壳工具 防止代码反编译,更安全,更方便 产品简介 Virbox Protector Standalone提供了强大的代码虚拟化.高级混淆与智能 ...

  5. C#基础加强(9)之对象序列化(二进制)

    介绍 对象序列化是将对象转换为二进制数据(字节流),反序列化是将二进制数据还原成对象.对象的非持久态的,不仅在程序重启.操作系统重启会造成对象的丢失,就是退出函数范围等都可能造成对象的消失,而序列化与 ...

  6. mysql 状态锁 连接数

    show OPEN TABLES where In_use > 0; show status like 'Table%'; SELECT * FROM information_schema.in ...

  7. 一次 Spark SQL 性能提升10倍的经历(转载)

    1. 遇到了啥问题 是酱紫的,简单来说:并发执行 spark job 的时候,并发的提速很不明显. 嗯,且听我慢慢道来,啰嗦点说,类似于我们内部有一个系统给分析师用,他们写一些 sql,在我们的 sp ...

  8. Xamarin Forms error MSB6006: “java.exe”已退出,代码为 2 解决办法

    https://vicenteguzman.mx/2017/08/20/error-java-exe-exited-with-code-2-xamari-forms/

  9. 六、latex中的特殊字符

  10. 正则表达式-----re库

    1.正则表达式的概念 a.为什么要用正则? 用字符串匹配也是可以的: startswith() 方法用于检查字符串是否是以指定子字符串开头,如果是则返回 True,否则返回 False.如果参数 be ...