根据规则可知 假设 (a,b) 可以到达坐标(aa,bb) 那么 aa=a*x+b*y  x y 必定有解  所以 我们只要求两个坐标的gcd看是否相等就好

#include<bits/stdc++.h>
using namespace std;
#define maxn 50005
#define LL long long
//LL  a[maxn],b[maxn],ans=0;
priority_queue<int,vector<int>,greater<int> >q;
LL gcd(LL a,LL b){
   ? a:gcd(b,a%b);
}
int main(){
  int t;
  cin>>t;
  while(t--){
     LL x,y,xx,yy;
     cin>>x>>y>>xx>>yy;
     if(gcd(x,y)==gcd(xx,yy)){
        cout<<"Yes"<<endl;
     }else{
        cout<<"No"<<endl;
     }
  }
  ;
}

51Nod--1247 可能的路径(gcd)的更多相关文章

  1. 51nod 1247 可能的路径(gcd)

    传送门 题意 略 分析 有以下结论 \(1.(x,y)->(y,x)\) \(2.(x,y)->(a,b)==>(a,b)->(x,y)\) 证明 做如下变换 \((a,b)- ...

  2. AC日记——可能的路径 51nod 1247

    可能的路径 思路: 看到题目想到gcd: 仔细一看是更相减损: 而gcd是更相减损的优化版: 所以,对于每组数据判断gcd是否相等就好: 来,上代码: #include <cstdio> ...

  3. 51nod最长递增路径:(还不错的图)

    一个无向图,可能有自环,有重边,每条边有一个边权.你可以从任何点出发,任何点结束,可以经过同一个点任意次.但是不能经过同一条边2次,并且你走过的路必须满足所有边的权值严格单调递增,求最长能经过多少条边 ...

  4. CF1101D GCD Counting(数学,树的直径)

    几个月的坑终于补了…… 题目链接:CF原网  洛谷 题目大意:一棵 $n$ 个点的树,每个点有点权 $a_i$.一条路径的长度定义为该路径经过的点数.一条路径的权值定义为该路径经过所有点的点权的 GC ...

  5. GCD Counting Codeforces - 990G

    https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...

  6. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  7. Educational Codeforces Round 58 Div. 2 自闭记

    明明多个几秒就能场上AK了.自闭. A:签到. #include<iostream> #include<cstdio> #include<cmath> #inclu ...

  8. [CODECHEF]TREECNT2

    题意:一棵带边权的树,边权可单边修改,问初始时和每次修改后有多少条路径$\gcd=1$ 首先考虑用反演求答案,设$f(n)$为路径$\gcd=n$的路径条数,$g(n)$为路径$\gcd$是$n$倍数 ...

  9. ZR提高失恋测2(9.7)

    ZR提高失恋测2(9.7) 网址http://www.zhengruioi.com/contest/392 版权原因,不放题面 A 首先,我们发现对于匹配串\(s\)中所有满足\(s_i \not = ...

  10. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

随机推荐

  1. Android 图片加载框架 Glide4.x

    概述 Glide是一个图片加载框架,使得我们可以轻松的加载和展示图片 Glide4.x新增apply()来进行设置,apply可以调用多次,但是如果两次apply存在冲突的设置,会以最后一次为准 新增 ...

  2. Anaconda安装sasl,thrift,thrift-sasl,PyHive连接Hive

    一.安装sasl 安装失败,前往:https://www.lfd.uci.edu/~gohlke/pythonlibs/#sasl下载对应自己python版本的sasl 本地安装: 二.安装thrif ...

  3. Linux中DHCP服务器的简单配置

    我安装了两台linux系统,一个作为服务器,一个客户端 两个都有3个网卡, 后两个网卡聚合为zhi一个网卡:Linux 网卡聚合 两台电脑都一样. 那么如何为这个聚合网卡进行DHCP的分配呢? 1.由 ...

  4. 爬虫基础--IO多路复用单线程异步非阻塞

    最近一直的学习爬虫  ,进行基础的学习 性能相关 参考 https://www.cnblogs.com/wupeiqi/p/6229292.html # 目标:单线程实现并发HTTP请求 # # so ...

  5. AngularJS学习之旅—AngularJS 模型(四)

    1.AngularJS ng-model 指令 1.ng-model 指令用于绑定应用程序数据到 HTML 控制器(input, select, textarea)的值. 2.ng-model 指令可 ...

  6. c/c++ llinux epoll系列5 解除epoll_wait状态

    linux epoll系列5 解除epoll_wait状态 有时候会有解除epoll_wait状态的需求. 实现方法: 1,给执行epoll_wait的程序发signal. 2,使用sockpair. ...

  7. 关于clone(java.lang.Object)重写

    1. 需要实现接口java.lang.Cloneable 2. 重写java.lang.Object的clone 3. clone访问权限扩大为public 4. 不实现(java.lang.Clon ...

  8. thinkphp v5.1 开发笔记

    一.安装TP5.1 1.使用git安装 <1>下载Tp git clone https://github.com/top-think/think tp5 <2>安装核心库 gi ...

  9. MongoDB的搭建并配置主从以及读写分离

    1.环境准备  1.Centos7 2.mongodb3.4.93.三台机器IP分别是:10.170.1.16.10.170.1.18.10.170.1.33 2.mongdb数据库的安装 如下操作是 ...

  10. Arduino 串口测试 电脑发数据接收后立马返回

    String comdata = ""; void setup() { Serial.begin(9600); while(Serial.read()>= 0){} //cl ...