根据规则可知 假设 (a,b) 可以到达坐标(aa,bb) 那么 aa=a*x+b*y  x y 必定有解  所以 我们只要求两个坐标的gcd看是否相等就好

#include<bits/stdc++.h>
using namespace std;
#define maxn 50005
#define LL long long
//LL  a[maxn],b[maxn],ans=0;
priority_queue<int,vector<int>,greater<int> >q;
LL gcd(LL a,LL b){
   ? a:gcd(b,a%b);
}
int main(){
  int t;
  cin>>t;
  while(t--){
     LL x,y,xx,yy;
     cin>>x>>y>>xx>>yy;
     if(gcd(x,y)==gcd(xx,yy)){
        cout<<"Yes"<<endl;
     }else{
        cout<<"No"<<endl;
     }
  }
  ;
}

51Nod--1247 可能的路径(gcd)的更多相关文章

  1. 51nod 1247 可能的路径(gcd)

    传送门 题意 略 分析 有以下结论 \(1.(x,y)->(y,x)\) \(2.(x,y)->(a,b)==>(a,b)->(x,y)\) 证明 做如下变换 \((a,b)- ...

  2. AC日记——可能的路径 51nod 1247

    可能的路径 思路: 看到题目想到gcd: 仔细一看是更相减损: 而gcd是更相减损的优化版: 所以,对于每组数据判断gcd是否相等就好: 来,上代码: #include <cstdio> ...

  3. 51nod最长递增路径:(还不错的图)

    一个无向图,可能有自环,有重边,每条边有一个边权.你可以从任何点出发,任何点结束,可以经过同一个点任意次.但是不能经过同一条边2次,并且你走过的路必须满足所有边的权值严格单调递增,求最长能经过多少条边 ...

  4. CF1101D GCD Counting(数学,树的直径)

    几个月的坑终于补了…… 题目链接:CF原网  洛谷 题目大意:一棵 $n$ 个点的树,每个点有点权 $a_i$.一条路径的长度定义为该路径经过的点数.一条路径的权值定义为该路径经过所有点的点权的 GC ...

  5. GCD Counting Codeforces - 990G

    https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...

  6. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  7. Educational Codeforces Round 58 Div. 2 自闭记

    明明多个几秒就能场上AK了.自闭. A:签到. #include<iostream> #include<cstdio> #include<cmath> #inclu ...

  8. [CODECHEF]TREECNT2

    题意:一棵带边权的树,边权可单边修改,问初始时和每次修改后有多少条路径$\gcd=1$ 首先考虑用反演求答案,设$f(n)$为路径$\gcd=n$的路径条数,$g(n)$为路径$\gcd$是$n$倍数 ...

  9. ZR提高失恋测2(9.7)

    ZR提高失恋测2(9.7) 网址http://www.zhengruioi.com/contest/392 版权原因,不放题面 A 首先,我们发现对于匹配串\(s\)中所有满足\(s_i \not = ...

  10. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

随机推荐

  1. 获取spring security用户相关信息

    在JSP中获得 使用spring security的标签库 在页面中引入标签 <%@ taglib prefix="sec" uri="http://www.spr ...

  2. Oracle 查询权限视图

    在Oracle中有很多用于查权限的视图,但很多人在需要查权限时会很困惑,不知道该用哪个视图去查,这里我列出几个常见的用于查权限的视图及其用法: 1DBA_ROLE_PRIVS 该视图主要有以下2个作用 ...

  3. C#的自动拼接Sql语句Insert方法及思路

    思路: 1.想想插入语句,大概是这样的一个框架:INSERT INTO 表名 (数据库列名) values (值) 2.这里要3个变量是不固定的,分别是:表名.数据库列名.值: a.表名我们这里很容易 ...

  4. Docker 架构(二)【转】

    Docker 使用客户端-服务器 (C/S) 架构模式,使用远程API来管理和创建Docker容器. Docker 容器通过 Docker 镜像来创建. 容器与镜像的关系类似于面向对象编程中的对象与类 ...

  5. 中科曙光I620-G15服务器登录密码破解

    服务器型号:中科曙光I620-G15服务器 系统:windowsserver2008R2 单位:保密 服务器登录密码忘记了,进不去桌面,后来在我们云修网工程师的指导下,顺利绕过密码登录系统,然后修改系 ...

  6. .NET Core跨平台部署

    目录 .NET Core跨平台部署 1. Windows-IIS 1.1 安装.NET Core Windows Server Hosting 1.2 配置应用程序池 1.3 使用发布文件 2 Lin ...

  7. Python爬虫【实战篇】百度贴吧爬取页面存到本地

    先上代码 import requests class TiebaSpider: def __init__(self, tieba_name): self.tieba_name = tieba_name ...

  8. MongoDB install

    下载地址1:https://www.mongodb.org/dl/linux下载地址2:https://www.mongodb.com/download-center/community关于Mongo ...

  9. 云端安装MQTT服务器

    如果自己下载的3.1版本的MQTT, 安装步骤参考 https://developer.emqx.io/docs/emq/v3/cn/install.html 配置用户名和密码第一种是用http ht ...

  10. Python第一天:你必须要知道的Python擅长领域以及各种重点学习框架(包含Python在世界上的应用)

    目录 Python5大擅长领域 WEB开发 网络编程 科学运算 GUI图形开发 运维自动化 Python在世界上的知名应用 国外 谷歌 CIA NASA YouTube Dropbox Instagr ...