</pre><pre name="code" class="cpp">/*
Theme:八皇后(非递归)
Coder:秒针的声音
Time:2015.1.13
*/
#include <iostream>
using namespace std;
#include <stdlib.h>
#include <math.h>
int No=0;
void Prin(int *q,int n)
{
cout<<"No."<<++No<<endl;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(q[i]!=j)
cout<<'X'<<" ";
else
cout<<'Q'<<" ";
}
cout<<endl;
}
cout<<endl;
}
int IsStay(int *q,int cnt,int step)
{
for(int i=0;i<cnt;i++){
if(q[i]==step||abs(cnt-i)==abs(step-q[i])){
return 0;
}
}
return 1;
}
void Queen(int n)
{
int cnt=0;
int *Q=(int *)malloc(n*sizeof(int));//个数为行数储存列信息
for(int Col=0;1;Col++){
if(IsStay(Q,cnt,Col)){
Q[cnt++]=Col;
if(cnt==n) Prin(Q,n);
Col=-1;
}else if(Col==n-1){
Col=Q[--cnt];
while(1){
if(Col!=n-1){
break;
}else{
Col=Q[--cnt];
if(cnt==-1) return;
}
}
}
}
}
int main(void)
{
int n=8;//八皇后
Queen(n);
return 0;
}

八皇后非递归(仅使用一个数组且可扩展为N皇后问题)的更多相关文章

  1. PHP递归方式把一个数组里面的null转换为空字符串”的方法

    在一些接口的调用中,直接查询数据库出来的字段可能为null字段,但是为了简便前端的判断,需要把null转换成空字符串'',这个时候就需要递归的方式进行.直接上代码如下: //递归方式把数组或字符串 n ...

  2. hdu 3887 Counting Offspring(DFS序【非递归】+树状数组)

    题意: N个点形成一棵树.给出根结点P还有树结构的信息. 输出每个点的F[i].F[i]:以i为根的所有子结点中编号比i小的数的个数. 0<n<=10^5 思路: 方法一:直接DFS,进入 ...

  3. 【11】-java递归和非递归二叉树前序中序后序遍历

    二叉树的遍历 对于二叉树来讲最主要.最基本的运算是遍历. 遍历二叉树 是指以一定的次序访问二叉树中的每个结点.所谓 访问结点 是指对结点进行各种操作的简称.例如,查询结点数据域的内容,或输出它的值,或 ...

  4. 扩展欧几里德算法(递归及非递归实现c++版)

    今天终于弄懂了扩展欧几里德算法,有了自己的理解,觉得很神奇,就想着写一篇博客. 在介绍扩展欧几里德算法之前,我们先来回顾一下欧几里德算法. 欧几里德算法(辗转相除法): 辗转相除法求最大公约数,高中就 ...

  5. 八皇后问题 递归实现 C语言 超详细 思路 基础

    八皇后问题 :假设 將八个皇后放到国际象棋盘上,使其两两之间无法相互攻击.共有几种摆法? 基础知识: 国际象棋里,棋盘为8X8格. 皇后每步可以沿直线.斜线 走任意格. 思路: 1.想把8个皇后放进去 ...

  6. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  7. N皇后问题的递归与非递归解法

    都在注释里了: public class NQueen { public static void main(String[] args) { Scanner sc = new Scanner(Syst ...

  8. C语言实现 二分查找数组中的Key值(递归和非递归)

    基本问题:使用二分查找的方式,对数组内的值进行匹配,如果成功,返回其下标,否则返回 -1.请使用递归和非递归两种方法说明. 非递归代码如下: #include <stdio.h> int ...

  9. 八皇后问题 --- 递归解法 --- java代码

    八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上.八皇后 ...

随机推荐

  1. 个人永久性免费-Excel催化剂功能第40波-工资、年终奖个人所得税计算函数

    学Excel的表哥表姐们必定有接触过个人所得税的案例学习,在计算个人所得税这个需求上,大家的层次也是很多种多样,当然Excel催化剂推荐的方式仍然是经过封装后的简单明了的自定义函数的方式,此篇已为财务 ...

  2. SP1026 FAVDICE - Favorite Dice[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 一个\(n\)面的骰子,求期望掷几次能使得每一面都被掷到 输入有\(T\)组数据,每次输入一个\(n\) 输出保留两位小数 \( ...

  3. 安卓BindService笔记

    1 前言 最近学习到了安卓的service,记录一下自己对BindService的理解,学习教程以及部分代码来自菜鸟教程的android教程:菜鸟教程安卓端BindService链接 2 正文 先贴一 ...

  4. CF1195C Basketball Exercise (dp + 贪心)

    题解出处:https://www.luogu.org/problemnew/solution/CF1195C 很水的一道C题……目测难度在黄~绿左右.请各位切题者合理评分. 注意到可以选择的球员编号是 ...

  5. Modify column Vs change column

    引言 I know, we can not rename a column using modify column syntax,but can change column syntax. My qu ...

  6. TP框架基础(三)

    [系统常量信息] 获取系统常量信息: 如果加参数true,会分组显示: >系统常量信息里经常用到的是user里的路径 > APP_PATH =>string'./shop/' 项目路 ...

  7. 获取Oracle中表的结构

    首先cmd登录Oracle:sqlplus user/password@host/db_name 然后输入DESC table_name 可以先按住Alt,再选中字段名(块选中快捷方式)

  8. linux初学者-系统启动故障篇

    linux初学者-系统启动故障篇 在系统的操作中,有时会不小心误删或者操作失误使得系统启动不起来,下文将列举几种常见的系统启动失败的情况及解决的办法. 1.删除或者覆盖mbr的446个字节 mbr的4 ...

  9. jmeter环境变量

    jmeter环境变量配置jmeter环境变量时,同时也需要配置Java变量(jdk最好使用1.7及1.7以上的版本)1.配置jdk环境变量安装jdk正常安装,一路默认就好,记住安装路径,配置环境变量时 ...

  10. Python秒算24点,行还是不行?

    周末闲来无事,看到隔壁家的老王在和隔壁家的媳妇玩24点,就进屋看了看.发现老王是真不行啊,那不行,这也不行. 就连个24点都玩不过他媳妇,给他媳妇气的,啥都不能满足,这不能,那也不能. 我坐下来和他媳 ...