Canny 边缘检测算法


Steps:

  1. 高斯滤波平滑
  2. 计算梯度大小和方向
  3. 非极大值抑制
  4. 双阈值检测和连接

代码结构:

Canny Edge Detection
| Gaussian_Smoothing
| | convolution.py
| | | convolution()
| | gaussion_smoothing.py
| | | dnorm()
| | | gaussian_kernel()
| | | gaussian_blur()
| Sobel_Filter
| | sobel.py
| | | sobel_edge_detection()
| Canny.py
| | non_max_suppression()
| | threshold()
| | hysteresis()
| | main()

代码解读:


1. 高斯滤波平滑

  • 创建一个高斯核(kernel_size=5):

  • 执行卷积和平均操作(以下均以 lenna 图为例)

2. 计算梯度大小和方向

水平方向和竖直方向


梯度图:

3. 非极大值抑制

4. 双阈值检测和连接


以下是代码:

import numpy as np
import cv2
import argparse from Computer_Vision.Canny_Edge_Detection.sobel import sobel_edge_detection
from Computer_Vision.Canny_Edge_Detection.gaussian_smoothing import gaussian_blur import matplotlib.pyplot as plt def non_max_suppression(gradient_magnitude, gradient_direction, verbose):
image_row, image_col = gradient_magnitude.shape output = np.zeros(gradient_magnitude.shape) PI = 180 for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col] if (0 <= direction < PI / 8) or (15 * PI / 8 <= direction <= 2 * PI):
before_pixel = gradient_magnitude[row, col - 1]
after_pixel = gradient_magnitude[row, col + 1] elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
before_pixel = gradient_magnitude[row + 1, col - 1]
after_pixel = gradient_magnitude[row - 1, col + 1] elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
before_pixel = gradient_magnitude[row - 1, col]
after_pixel = gradient_magnitude[row + 1, col] else:
before_pixel = gradient_magnitude[row - 1, col - 1]
after_pixel = gradient_magnitude[row + 1, col + 1] if gradient_magnitude[row, col] >= before_pixel and gradient_magnitude[row, col] >= after_pixel:
output[row, col] = gradient_magnitude[row, col] if verbose:
plt.imshow(output, cmap='gray')
plt.title("Non Max Suppression")
plt.show() return output def threshold(image, low, high, weak, verbose=False):
output = np.zeros(image.shape) strong = 255 strong_row, strong_col = np.where(image >= high)
weak_row, weak_col = np.where((image <= high) & (image >= low)) output[strong_row, strong_col] = strong
output[weak_row, weak_col] = weak if verbose:
plt.imshow(output, cmap='gray')
plt.title("threshold")
plt.show() return output def hysteresis(image, weak):
image_row, image_col = image.shape top_to_bottom = image.copy() for row in range(1, image_row):
for col in range(1, image_col):
if top_to_bottom[row, col] == weak:
if top_to_bottom[row, col + 1] == 255 or top_to_bottom[row, col - 1] == 255 or top_to_bottom[row - 1, col] == 255 or top_to_bottom[
row + 1, col] == 255 or top_to_bottom[
row - 1, col - 1] == 255 or top_to_bottom[row + 1, col - 1] == 255 or top_to_bottom[row - 1, col + 1] == 255 or top_to_bottom[
row + 1, col + 1] == 255:
top_to_bottom[row, col] = 255
else:
top_to_bottom[row, col] = 0 bottom_to_top = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(image_col - 1, 0, -1):
if bottom_to_top[row, col] == weak:
if bottom_to_top[row, col + 1] == 255 or bottom_to_top[row, col - 1] == 255 or bottom_to_top[row - 1, col] == 255 or bottom_to_top[
row + 1, col] == 255 or bottom_to_top[
row - 1, col - 1] == 255 or bottom_to_top[row + 1, col - 1] == 255 or bottom_to_top[row - 1, col + 1] == 255 or bottom_to_top[
row + 1, col + 1] == 255:
bottom_to_top[row, col] = 255
else:
bottom_to_top[row, col] = 0 right_to_left = image.copy() for row in range(1, image_row):
for col in range(image_col - 1, 0, -1):
if right_to_left[row, col] == weak:
if right_to_left[row, col + 1] == 255 or right_to_left[row, col - 1] == 255 or right_to_left[row - 1, col] == 255 or right_to_left[
row + 1, col] == 255 or right_to_left[
row - 1, col - 1] == 255 or right_to_left[row + 1, col - 1] == 255 or right_to_left[row - 1, col + 1] == 255 or right_to_left[
row + 1, col + 1] == 255:
right_to_left[row, col] = 255
else:
right_to_left[row, col] = 0 left_to_right = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(1, image_col):
if left_to_right[row, col] == weak:
if left_to_right[row, col + 1] == 255 or left_to_right[row, col - 1] == 255 or left_to_right[row - 1, col] == 255 or left_to_right[
row + 1, col] == 255 or left_to_right[
row - 1, col - 1] == 255 or left_to_right[row + 1, col - 1] == 255 or left_to_right[row - 1, col + 1] == 255 or left_to_right[
row + 1, col + 1] == 255:
left_to_right[row, col] = 255
else:
left_to_right[row, col] = 0 final_image = top_to_bottom + bottom_to_top + right_to_left + left_to_right final_image[final_image > 255] = 255 return final_image if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
ap.add_argument("-v", "--verbose", type=bool, default=False, help="Path to the image")
args = vars(ap.parse_args()) image = cv2.imread(args["image"]) blurred_image = gaussian_blur(image, kernel_size=9, verbose=False) edge_filter = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) gradient_magnitude, gradient_direction = sobel_edge_detection(blurred_image, edge_filter, convert_to_degree=True, verbose=args["verbose"]) new_image = non_max_suppression(gradient_magnitude, gradient_direction, verbose=args["verbose"]) weak = 50 new_image = threshold(new_image, 5, 20, weak=weak, verbose=args["verbose"]) new_image = hysteresis(new_image, weak) plt.imshow(new_image, cmap='gray')
plt.title("Canny Edge Detector")
plt.show()

References

hahahha

【数字图像分析】基于Python实现 Canny Edge Detection(Canny 边缘检测算法)的更多相关文章

  1. 猜数字游戏--基于python

    """题目:练习使用python写一个猜数字的游戏,数字范围0-100,每次猜错,需要给出缩小后的范围,每个人只有10次的猜测机会,猜测机会用完游戏结束!"&q ...

  2. 【笔记】基于Python的数字图像处理

    [博客导航] [Python相关] 前言 基于Python的数字图像处理,离不开相关处理的第三方库函数.搜索网络资源,列出如下资源链接. Python图像处理库到底用哪家 python计算机视觉编程— ...

  3. Image Processing and Analysis_8_Edge Detection:Scale-space and edge detection using anisotropic diffusion——1990

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. Image Processing and Analysis_8_Edge Detection:A Computational Approach to Edge Detection——1986

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  5. Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  6. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

  7. Image Processing and Analysis_8_Edge Detection:Edge Detection Revisited ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  8. Image Processing and Analysis_8_Edge Detection:Local Scale Control for Edge Detection and Blur Estimation——1998

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. Image Processing and Analysis_8_Edge Detection: Optimal edge detection in two-dimensional images ——1996

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. nginx 反向代理之 proxy_pass

    格式很简单: proxy_pass URL; 其中URL包含:传输协议(http://, https://等).主机名(域名或者IP:PORT).uri. 示例如下: proxy_pass http: ...

  2. 范罗士空气净化器PT65评测

    买了一台空气净化器,之前网上查了查,哟,是个知名品牌,做碎纸机的. 你问我为啥找个卖碎纸机的买空气净化器?因为年轻,咱们往下看 包装还可以 一打开就有疑问了,这塑料味道不对呀,三手料也不该这个味儿啊. ...

  3. 你真的会用搜索吗?—— google 搜索技巧

    鄙人用了那么多年 google ,却只会简单的空格. 虽然空格已经很强大了.google 对此做了非常多的优化,原则是让你只用最基础的输入搭配空格就能达到跟下面介绍的方法几乎一样的效果,但是还有知道一 ...

  4. 使用cJSON库解析和构建JSON字符串

    使用cJSON库解析和构建JSON字符串 前言 其实之前的两篇博文已经介绍了json格式和如何使用cJSON库来解析JSON: 使用cJSON库解析JSON JSON简介 当时在MCU平台上使用时,会 ...

  5. Spring注解式AOP面向切面编程.

    1.AOP指在程序运行期间动态的将某段代码切入到指定方法指定位置进行运行的编程方式.aop底层是动态代理. package com.bie.config; import org.aspectj.lan ...

  6. 对python中等值和大小比较

    等值.大小比较 在python中,只要两个对象的类型相同,且它们是内置类型(字典除外),那么这两个对象就能进行比较.关键词:内置类型.同类型.所以,两个对象如果类型不同,就没法比较,比如数值类型的数值 ...

  7. Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践

    Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践 Java生鲜电商平台微服务现状 某个服务挂了,导致上游大量报警,如何快速定位哪个服务出问题? 某个核心挂了,导致大量报错,如何 ...

  8. iOS 中UICollectionView实现各种视觉效果

    参考链接:https://www.jianshu.com/p/b3322f41e84c 基础:https://www.jianshu.com/p/d0b034f59020

  9. MySQL基础之练习题

    题目 现有班级.学生以及成绩三张表: 备注:表名称和字段名称可以参考表格内单词设置 根据表格信息,按要求完成下面SQL语句的编写: 1.使用SQL分别创建班级表.学生表以及成绩表的表结构,表内数据可以 ...

  10. U盘的几种分类及格式

    u盘常见的几种分类: 1.按u盘材质来分,可以分为金属u盘.塑料u盘.软胶u盘.皮革u盘.木质u盘.珠宝u盘等.这些主要是考虑u盘本身外壳所用材质的. 2.从u盘容量来分,就是8GB.16GB.32G ...