Canny 边缘检测算法


Steps:

  1. 高斯滤波平滑
  2. 计算梯度大小和方向
  3. 非极大值抑制
  4. 双阈值检测和连接

代码结构:

Canny Edge Detection
| Gaussian_Smoothing
| | convolution.py
| | | convolution()
| | gaussion_smoothing.py
| | | dnorm()
| | | gaussian_kernel()
| | | gaussian_blur()
| Sobel_Filter
| | sobel.py
| | | sobel_edge_detection()
| Canny.py
| | non_max_suppression()
| | threshold()
| | hysteresis()
| | main()

代码解读:


1. 高斯滤波平滑

  • 创建一个高斯核(kernel_size=5):

  • 执行卷积和平均操作(以下均以 lenna 图为例)

2. 计算梯度大小和方向

水平方向和竖直方向


梯度图:

3. 非极大值抑制

4. 双阈值检测和连接


以下是代码:

import numpy as np
import cv2
import argparse from Computer_Vision.Canny_Edge_Detection.sobel import sobel_edge_detection
from Computer_Vision.Canny_Edge_Detection.gaussian_smoothing import gaussian_blur import matplotlib.pyplot as plt def non_max_suppression(gradient_magnitude, gradient_direction, verbose):
image_row, image_col = gradient_magnitude.shape output = np.zeros(gradient_magnitude.shape) PI = 180 for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col] if (0 <= direction < PI / 8) or (15 * PI / 8 <= direction <= 2 * PI):
before_pixel = gradient_magnitude[row, col - 1]
after_pixel = gradient_magnitude[row, col + 1] elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
before_pixel = gradient_magnitude[row + 1, col - 1]
after_pixel = gradient_magnitude[row - 1, col + 1] elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
before_pixel = gradient_magnitude[row - 1, col]
after_pixel = gradient_magnitude[row + 1, col] else:
before_pixel = gradient_magnitude[row - 1, col - 1]
after_pixel = gradient_magnitude[row + 1, col + 1] if gradient_magnitude[row, col] >= before_pixel and gradient_magnitude[row, col] >= after_pixel:
output[row, col] = gradient_magnitude[row, col] if verbose:
plt.imshow(output, cmap='gray')
plt.title("Non Max Suppression")
plt.show() return output def threshold(image, low, high, weak, verbose=False):
output = np.zeros(image.shape) strong = 255 strong_row, strong_col = np.where(image >= high)
weak_row, weak_col = np.where((image <= high) & (image >= low)) output[strong_row, strong_col] = strong
output[weak_row, weak_col] = weak if verbose:
plt.imshow(output, cmap='gray')
plt.title("threshold")
plt.show() return output def hysteresis(image, weak):
image_row, image_col = image.shape top_to_bottom = image.copy() for row in range(1, image_row):
for col in range(1, image_col):
if top_to_bottom[row, col] == weak:
if top_to_bottom[row, col + 1] == 255 or top_to_bottom[row, col - 1] == 255 or top_to_bottom[row - 1, col] == 255 or top_to_bottom[
row + 1, col] == 255 or top_to_bottom[
row - 1, col - 1] == 255 or top_to_bottom[row + 1, col - 1] == 255 or top_to_bottom[row - 1, col + 1] == 255 or top_to_bottom[
row + 1, col + 1] == 255:
top_to_bottom[row, col] = 255
else:
top_to_bottom[row, col] = 0 bottom_to_top = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(image_col - 1, 0, -1):
if bottom_to_top[row, col] == weak:
if bottom_to_top[row, col + 1] == 255 or bottom_to_top[row, col - 1] == 255 or bottom_to_top[row - 1, col] == 255 or bottom_to_top[
row + 1, col] == 255 or bottom_to_top[
row - 1, col - 1] == 255 or bottom_to_top[row + 1, col - 1] == 255 or bottom_to_top[row - 1, col + 1] == 255 or bottom_to_top[
row + 1, col + 1] == 255:
bottom_to_top[row, col] = 255
else:
bottom_to_top[row, col] = 0 right_to_left = image.copy() for row in range(1, image_row):
for col in range(image_col - 1, 0, -1):
if right_to_left[row, col] == weak:
if right_to_left[row, col + 1] == 255 or right_to_left[row, col - 1] == 255 or right_to_left[row - 1, col] == 255 or right_to_left[
row + 1, col] == 255 or right_to_left[
row - 1, col - 1] == 255 or right_to_left[row + 1, col - 1] == 255 or right_to_left[row - 1, col + 1] == 255 or right_to_left[
row + 1, col + 1] == 255:
right_to_left[row, col] = 255
else:
right_to_left[row, col] = 0 left_to_right = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(1, image_col):
if left_to_right[row, col] == weak:
if left_to_right[row, col + 1] == 255 or left_to_right[row, col - 1] == 255 or left_to_right[row - 1, col] == 255 or left_to_right[
row + 1, col] == 255 or left_to_right[
row - 1, col - 1] == 255 or left_to_right[row + 1, col - 1] == 255 or left_to_right[row - 1, col + 1] == 255 or left_to_right[
row + 1, col + 1] == 255:
left_to_right[row, col] = 255
else:
left_to_right[row, col] = 0 final_image = top_to_bottom + bottom_to_top + right_to_left + left_to_right final_image[final_image > 255] = 255 return final_image if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
ap.add_argument("-v", "--verbose", type=bool, default=False, help="Path to the image")
args = vars(ap.parse_args()) image = cv2.imread(args["image"]) blurred_image = gaussian_blur(image, kernel_size=9, verbose=False) edge_filter = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) gradient_magnitude, gradient_direction = sobel_edge_detection(blurred_image, edge_filter, convert_to_degree=True, verbose=args["verbose"]) new_image = non_max_suppression(gradient_magnitude, gradient_direction, verbose=args["verbose"]) weak = 50 new_image = threshold(new_image, 5, 20, weak=weak, verbose=args["verbose"]) new_image = hysteresis(new_image, weak) plt.imshow(new_image, cmap='gray')
plt.title("Canny Edge Detector")
plt.show()

References

hahahha

【数字图像分析】基于Python实现 Canny Edge Detection(Canny 边缘检测算法)的更多相关文章

  1. 猜数字游戏--基于python

    """题目:练习使用python写一个猜数字的游戏,数字范围0-100,每次猜错,需要给出缩小后的范围,每个人只有10次的猜测机会,猜测机会用完游戏结束!"&q ...

  2. 【笔记】基于Python的数字图像处理

    [博客导航] [Python相关] 前言 基于Python的数字图像处理,离不开相关处理的第三方库函数.搜索网络资源,列出如下资源链接. Python图像处理库到底用哪家 python计算机视觉编程— ...

  3. Image Processing and Analysis_8_Edge Detection:Scale-space and edge detection using anisotropic diffusion——1990

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. Image Processing and Analysis_8_Edge Detection:A Computational Approach to Edge Detection——1986

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  5. Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  6. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

  7. Image Processing and Analysis_8_Edge Detection:Edge Detection Revisited ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  8. Image Processing and Analysis_8_Edge Detection:Local Scale Control for Edge Detection and Blur Estimation——1998

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. Image Processing and Analysis_8_Edge Detection: Optimal edge detection in two-dimensional images ——1996

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. linux常用命令总结篇

    关于linux的一些基础命令,以前也学过,但是长时间不用还是感觉生疏了,所以记录下来以便后期温故知新. 1. cd:cd命令用来切换工作目录至dirname.cd ~ 进入用户主目录,cd - 进入之 ...

  2. steamdb cookie

    steamdb cookie import requests, re, os, pymysql, time from lxml import etree from steamdb.YDM import ...

  3. IT兄弟连 HTML5教程 HTML5做到了与之前版本的兼容

    为了保证HTML5能与之前的HTML版本达到最大的兼容,HTML5对一些元素标记的省略.boolean值的属性,以及引号的省略这几方面进行了兼顾,确保与之前版本的HTML达到兼容.在下面示例中,将本节 ...

  4. 【开发工具】本机安装的JDK8,启动IDEA2019没反应

    问题描述 本来开发工具安装的是IDEA2018,有天用着用着突然崩溃了,重启后死活用不了.心血来潮下载了2019版本,顺利安装完,但是点击快捷方式启动的时候一直没反应.后来咨询同事,在下面的启动脚本中 ...

  5. .net 发送qq邮件

    最近开发一个项目,需要给客户发送报告邮件,在开发中遇到本地调试发送邮件一切正常,但当部署到服务器上的时候,一直返回“发送失败”,在此记录,以免以后采坑 webapi 端代码: /// <summ ...

  6. 在Python中反向遍历序列(列表、字符串、元组等)的五种方式

    1. reversed() a = [1, 2, 3, 4] for i in reversed(a): print(i) 2. range(len(a)-1, -1, -1) a = [1, 2, ...

  7. Pandas处理超大规模数据

    对于超大规模的csv文件,我们无法一下将其读入内存当中,只能分块一部分一部分的进行读取: 首先进行如下操作: import pandas as pd reader = pd.read_csv('dat ...

  8. [转]Java虚拟机类加载机制

    原文地址:http://blog.csdn.net/u013256816/article/details/50829596 看到这个题目,很多人会觉得我写我的java代码,至于类,JVM爱怎么加载就怎 ...

  9. more than 120 seconds|hung_task_timeout_secs 什么鬼?

    //2019/7/31 18:41:14掐指一算应该resore完了呀,是不是天热想罢工?不过已经差不多30个小时了无意间一查 tail -500f /var/log/messages 发现有些“mo ...

  10. MySQL中if的写法

    关键词:IF --if 判断,如果 device_num 的值为1,则赋值为100,反之为200 SELECT district, shop_name, IF ( device_num , , ) A ...