import pandas as pd
import numpy as np

pandas 有两个主要的数据结构:Series 和 DataFrame;
Series 是一个一维数组对象 ,它包含一组索引和一组数据,可以把它理解为一组带索引的数组。
DataFrame 是一个表格型的数据结构。它提供有序的列和不同类型的列值。

df:Pandas DataFrame对象
s: Pandas Series对象

数据导入:

  pd.read_csv(filename):从csv文件中导入数据;
  pd.read_table(filename):从限定分隔符的文本文件导入数据;
  pd.read_excel(filename):从Excel文件导入数据;
  pd.read_sql(query,connection_object):从SQL表/库中导入数据;
  pd.read_json(json_string):从JSON格式的字符串导入数据;
  pd.read_html(url):解析URLL,字符串或者HTML文件;
  pd.read_clipboard():从粘贴板获取内容;
  pd.DataFrame(dict):从字典对象导入数据;

数据导出:

  df.to_csv(filename):导出数据到CSV文件;
  df.excel(filename):导出数据到EXCEl文件;
  df.to_sql(table_nname,connection_object):导出数据到SQL表;
  df.json(filename):以json格式导出数据到文本文件;

创建对象:

  pd.DataFrame(np.random.rand(20,5)):创建20行5列的随即数组成的DataFrame对象;
  pd.Series(my_list):从可迭代对象my_list创建一个Series对象;
  df.index = pd.date_range('1900/1/30',periods=df.shape[0]):增加一个日期索引;

  index和reindex联合使用很有用处,index可作为索引并且元素乱排序之后,所以跟着元素保持不变,因此,当重排元素时,只需要对index进行才重排即可:reindex。

数据查看:

  df.info():查看索引、数据类型和内存信息;
  df.tail():查看DataFrame对象的最后n行;
  df.shape():查看行数和列数;
  df.head():查看DataFrame对象的前n行;
  df.describe():查看数值型列的汇总统计;
  s.value_counts(dropna=False):查看Series对象的唯一值和计数;
  df.apply(pd.Seices.value_counts):查看DataFrame对象中每一列的唯一值和计数;

数据选取:

  df[col]:根据列名,并以Series的形式返回列;
  df[[col1, col2]]:以DataFrame形式返回多列;
  s.iloc[0]:按位置选取数据;
  s.loc['index_one']:按索引选取数据;
  df.iloc[0,:]:返回第一行;

数据清洗:

  df.columns = ['a','b','c']:重命名列名

  pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组;

  pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
  df.dropna():删除所有包含空值的行;

  df.fillna(x):用x替换DataFrame对象中所有的空值;

  s.astype(float):将Series中的数据类型更改为float类型;

  s.replace(1,'one'):用‘one’代替所有等于1的值
  df.rename(columns=lambda x: x + 1):批量更改列名;

  df.set_index('column_one'):更改索引列;

数据处理:

  df[df[col] > 0.5]:选择col列的值大于0.5的行;
  df.sort_values(col1):按照列col1排序数据,默认升序排列;
  df.groupby(col):返回一个按列col进行分组的Groupby对象;

  df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值;

  df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表;

  data.apply(np.mean):对DataFrame中的每一列应用函数np.mean

数据合并:

  df1.append(df2):将df2中的行添加到df1的尾部
  df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
  df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join

数据统计:

  df.describe():查看数据值列的汇总统计;

  df.mean():返回所有列的均值

  df.corr():返回列与列之间的相关系数;

  df.count():返回每一列中的非空值的个数;

  df.max():返回每一列的最大值

  df.min():返回每一列的最小值;

  df.median():返回每一列的中位数;

  df.std():返回每一列的标准

Pandas支持的数据类型:

  int 整型
  float 浮点型
  bool 布尔类型
  object 字符串类型
  category 种类
  datetime 时间类型

其他:

  df.astypes: 数据格式转换
  df.value_counts:相同数值的个数统计
  df.hist(): 画直方图
  df.get_dummies: one-hot编码,将类型格式的属性转换成矩阵型的属性。比如:三种颜色RGB,红色编码为[1 0 0];

后面会继续更新

Pandas里面常用的一些数据分析函数总结的更多相关文章

  1. pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

    pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...

  2. python重要的第三方库pandas模块常用函数解析之DataFrame

    pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...

  3. pandas模块常用函数解析之Series(详解)

    pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网 ...

  4. C#-正则,常用几种数据解析-端午快乐

    在等待几个小时就是端午节了,这里预祝各位节日快乐. 这里分享的是几个在C#中常用的正则解析数据写法,其实就是Regex类,至于正则的匹配格式,请仔细阅读正则的api文档,此处不具体说明,谢谢. 开始吧 ...

  5. pandas学习(四)--数据的归一化

    欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...

  6. Pandas学习(一)——数据的导入

    欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...

  7. Pandas中查看列中数据的种类及个数

    Pandas中查看列中数据的种类及个数 读取数据 import pandas as pd import numpy as np filepath = 'your_file_path.csv' data ...

  8. 利用 pandas库读取excel表格数据

    利用 pandas库读取excel表格数据 初入IT行业,愿与大家一起学习,共同进步,有问题请指出!! 还在为数据读取而头疼呢,请看下方简洁介绍: 数据来源为国家统计局网站下载: 具体方法 代码: i ...

  9. pandas中常用的操作一

    pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的 ...

随机推荐

  1. 本地存储localstorage

    小小插件,封装了一个存取删 <script type="text/javascript"> /* *getItem(name) * *setItem(name,valu ...

  2. (转)白话数字签名(2)——软件&设备

    然而它太慢了 非对称加密算法有一个重大缺点——加密速度慢,或者说得更拽一些,编码率比较低.例如在上一篇里我给Clark传的那个1GB的小电影,进行非对称加密足足用了66小时.那个借条小一些吧,也用了将 ...

  3. 《计算机网络 自顶向下方法》 第2章 应用层 Part1

    常见的应用层协议有哪些?  HTTP(HyperText Transfer  Protocol):超文本传输协议 FTP(File Transfer Protocol):文件传输协议 SMTP(Sim ...

  4. 分享使用PHP开发留言板

    首先我不是一名开发人员,只是一名小小的运维工程师,PHP是我自己喜欢的一门开发语言,所以我偶尔也会敲一些代码,写一些案例.今天我给大家分享的是使用PHP开发的留言板,留言板功能不全所以请大家见谅,也不 ...

  5. 并发编程-深入浅出AQS

    AQS是并发编程中非常重要的概念,它是juc包下的许多并发工具类,如CountdownLatch,CyclicBarrier,Semaphore 和锁, 如ReentrantLock, ReaderW ...

  6. Linux菜鸟——常见命令一 权限

    Linux对文件和目录的权限位 权限位是十位 第一位 代表文件类型 - 普通文件 d 目录文件 l 链接文件 后面九尾 所有者权限 u = user 所属组权限 g = group 其他人权限 o = ...

  7. 使用Java窗口程序执行输入的任何cmd命令

    利用Java窗口程序来执行用输入的任何命令 实现效果: Java桌面窗口,输入框.按钮,当输入框被输入命令的时候,点击按钮执行命令! 实现代码 package com.remote.remote.ag ...

  8. SpringMvc demo示例及源码详细分析

    三层架构介绍 我们的开发架构一般都是基于两种形式,一种C/S架构,也就是客户端/服务器,另一种是B/S架构,也就是浏览器/服务器.在JavaEE开发中,几乎全部都是基于B/S架构的开发.那么在B/S架 ...

  9. Roarctf 几道pwn 复现

    1.easy_pwn 可以利用的点: __int64 __fastcall sub_E26(signed int a1, unsigned int a2) { __int64 result; // r ...

  10. 第9场 E-All men are brothers(并查集)

    题目链接 题意:n个人,m次操作,每次操作使得两个人(x,y)成为朋友,朋友的关系是可以传递的,计算执行每次操作后,选择四个人两两都不是朋友的不同方案的数目. 数据范围:(n <= 100000 ...