NS3中一些难以理解的常数
摘要:在NS3的学习中,PHY MAC中总有一些常数,需要理解才能修改。如帧间间隔等。那么,本文做个简单分析,帮助大家理解。针对802.11标准中MAC协议。
void
WifiMac::Configure80211b (void)
{
SetSifs (MicroSeconds (10));
SetSlot (MicroSeconds (20));
SetEifsNoDifs (MicroSeconds (10 + 304));
SetPifs (MicroSeconds (10 + 20));
SetCtsTimeout (MicroSeconds (10 + 304 + 20 + GetDefaultMaxPropagationDelay ().GetMicroSeconds () * 2));
SetAckTimeout (MicroSeconds (10 + 304 + 20 + GetDefaultMaxPropagationDelay ().GetMicroSeconds () * 2));
}
304是怎么来的呢??

1、PHY
采用DSSS,1Mbps模式下。在802.11-2012中,17.2.2.3节中,有PPDU format规定了帧格式。如下图:

其中,大家比较关心的2个参数就是 PLCP Preamble 和 PLCP Header,分别为144bits和48bits。也就是192us,英文为192 MicroSeconds。
计算时间的相关代码,在NS3中 wifi-phy.cc中,代码如下:
uint32_t
WifiPhy::GetPlcpHeaderDurationMicroSeconds (WifiMode payloadMode, WifiPreamble preamble)
{
switch (payloadMode.GetModulationClass ())
{
case WIFI_MOD_CLASS_OFDM:
{
switch (payloadMode.GetBandwidth ())
{
case 20000000:
default:
// (Section 18.3.3 "PLCP preamble (SYNC))" and Figure 18-4 "OFDM training structure"; IEEE Std 802.11-2012)
// also (Section 18.3.2.4 "Timing related parameters" Table 18-5 "Timing-related parameters"; IEEE Std 802.11-2012)
// We return the duration of the SIGNAL field only, since the
// SERVICE field (which strictly speaking belongs to the PLCP
// header, see Section 18.3.2 and Figure 18-1) is sent using the
// payload mode.
return 4;
case 10000000:
// (Section 18.3.2.4 "Timing related parameters" Table 18-5 "Timing-related parameters"; IEEE Std 802.11-2012)
return 8;
case 5000000:
// (Section 18.3.2.4 "Timing related parameters" Table 18-5 "Timing-related parameters"; IEEE Std 802.11-2012)
return 16;
}
}
//Added by Ghada to support 11n
case WIFI_MOD_CLASS_HT:
{ //IEEE 802.11n Figure 20.1
switch (preamble)
{
case WIFI_PREAMBLE_HT_MF:
// L-SIG
return 4;
case WIFI_PREAMBLE_HT_GF:
//L-SIG
return 0;
default:
// L-SIG
return 4;
}
}
case WIFI_MOD_CLASS_ERP_OFDM:
return 4; case WIFI_MOD_CLASS_DSSS:
if (preamble == WIFI_PREAMBLE_SHORT)
{
// (Section 17.2.2.3 "Short PPDU format" and Figure 17-2 "Short PPDU format"; IEEE Std 802.11-2012)
return 24;
}
else // WIFI_PREAMBLE_LONG
{
// (Section 17.2.2.2 "Long PPDU format" and Figure 17-1 "Short PPDU format"; IEEE Std 802.11-2012)
return 48;
} default:
NS_FATAL_ERROR ("unsupported modulation class");
return 0;
}
} uint32_t
WifiPhy::GetPlcpPreambleDurationMicroSeconds (WifiMode payloadMode, WifiPreamble preamble)
{
switch (payloadMode.GetModulationClass ())
{
case WIFI_MOD_CLASS_OFDM:
{
switch (payloadMode.GetBandwidth ())
{
case 20000000:
default:
// (Section 18.3.3 "PLCP preamble (SYNC))" Figure 18-4 "OFDM training structure"
// also Section 18.3.2.3 "Modulation-dependent parameters" Table 18-4 "Modulation-dependent parameters"; IEEE Std 802.11-2012)
return 16;
case 10000000:
// (Section 18.3.3 "PLCP preamble (SYNC))" Figure 18-4 "OFDM training structure"
// also Section 18.3.2.3 "Modulation-dependent parameters" Table 18-4 "Modulation-dependent parameters"; IEEE Std 802.11-2012)
return 32;
case 5000000:
// (Section 18.3.3 "PLCP preamble (SYNC))" Figure 18-4 "OFDM training structure"
// also Section 18.3.2.3 "Modulation-dependent parameters" Table 18-4 "Modulation-dependent parameters"; IEEE Std 802.11-2012)
return 64;
}
}
case WIFI_MOD_CLASS_HT:
{ //IEEE 802.11n Figure 20.1 the training symbols before L_SIG or HT_SIG
return 16;
}
case WIFI_MOD_CLASS_ERP_OFDM:
return 16; case WIFI_MOD_CLASS_DSSS:
if (preamble == WIFI_PREAMBLE_SHORT)
{
// (Section 17.2.2.3 "Short PPDU format)" Figure 17-2 "Short PPDU format"; IEEE Std 802.11-2012)
return 72;
}
else // WIFI_PREAMBLE_LONG
{
// (Section 17.2.2.2 "Long PPDU format)" Figure 17-1 "Long PPDU format"; IEEE Std 802.11-2012)
return 144;
}
default:
NS_FATAL_ERROR ("unsupported modulation class");
return 0;
}
} double
WifiPhy::GetPayloadDurationMicroSeconds (uint32_t size, WifiTxVector txvector)
{
WifiMode payloadMode=txvector.GetMode(); NS_LOG_FUNCTION (size << payloadMode); switch (payloadMode.GetModulationClass ())
{
case WIFI_MOD_CLASS_OFDM:
case WIFI_MOD_CLASS_ERP_OFDM:
{
// (Section 18.3.2.4 "Timing related parameters" Table 18-5 "Timing-related parameters"; IEEE Std 802.11-2012
// corresponds to T_{SYM} in the table)
uint32_t symbolDurationUs; switch (payloadMode.GetBandwidth ())
{
case 20000000:
default:
symbolDurationUs = 4;
break;
case 10000000:
symbolDurationUs = 8;
break;
case 5000000:
symbolDurationUs = 16;
break;
} // (Section 18.3.2.3 "Modulation-dependent parameters" Table 18-4 "Modulation-dependent parameters"; IEEE Std 802.11-2012)
// corresponds to N_{DBPS} in the table
double numDataBitsPerSymbol = payloadMode.GetDataRate () * symbolDurationUs / 1e6; // (Section 18.3.5.4 "Pad bits (PAD)" Equation 18-11; IEEE Std 802.11-2012)
uint32_t numSymbols = lrint (ceil ((16 + size * 8.0 + 6.0) / numDataBitsPerSymbol)); // Add signal extension for ERP PHY
if (payloadMode.GetModulationClass () == WIFI_MOD_CLASS_ERP_OFDM)
{
return numSymbols * symbolDurationUs + 6;
}
else
{
return numSymbols * symbolDurationUs;
}
}
case WIFI_MOD_CLASS_HT:
{
double symbolDurationUs;
double m_Stbc;
//if short GI data rate is used then symbol duration is 3.6us else symbol duration is 4us
//In the future has to create a stationmanager that only uses these data rates if sender and reciever support GI
if (payloadMode.GetUniqueName() == "OfdmRate135MbpsBW40MHzShGi" || payloadMode.GetUniqueName() == "OfdmRate65MbpsBW20MHzShGi" )
{
symbolDurationUs=3.6;
}
else
{
switch (payloadMode.GetDataRate ()/ (txvector.GetNss()))
{ //shortGi
case 7200000:
case 14400000:
case 21700000:
case 28900000:
case 43300000:
case 57800000:
case 72200000:
case 15000000:
case 30000000:
case 45000000:
case 60000000:
case 90000000:
case 120000000:
case 150000000:
symbolDurationUs=3.6;
break;
default:
symbolDurationUs=4;
}
}
if (txvector.IsStbc())
m_Stbc=2;
else
m_Stbc=1;
double numDataBitsPerSymbol = payloadMode.GetDataRate () *txvector.GetNss() * symbolDurationUs / 1e6;
//check tables 20-35 and 20-36 in the standard to get cases when nes =2
double Nes=1;
// IEEE Std 802.11n, section 20.3.11, equation (20-32)
uint32_t numSymbols = lrint (m_Stbc*ceil ((16 + size * 8.0 + 6.0*Nes) / (m_Stbc* numDataBitsPerSymbol))); return numSymbols * symbolDurationUs; }
case WIFI_MOD_CLASS_DSSS:
// (Section 17.2.3.6 "Long PLCP LENGTH field"; IEEE Std 802.11-2012)
NS_LOG_LOGIC (" size=" << size
<< " mode=" << payloadMode
<< " rate=" << payloadMode.GetDataRate () );
return lrint (ceil ((size * 8.0) / (payloadMode.GetDataRate () / 1.0e6))); default:
NS_FATAL_ERROR ("unsupported modulation class");
return 0;
}
} Time
WifiPhy::CalculateTxDuration (uint32_t size, WifiTxVector txvector, WifiPreamble preamble)
{
WifiMode payloadMode=txvector.GetMode();
double duration = GetPlcpPreambleDurationMicroSeconds (payloadMode, preamble)
+ GetPlcpHeaderDurationMicroSeconds (payloadMode, preamble)
+ GetPlcpHtSigHeaderDurationMicroSeconds (payloadMode, preamble)
+ GetPlcpHtTrainingSymbolDurationMicroSeconds (payloadMode, preamble,txvector)
+ GetPayloadDurationMicroSeconds (size, txvector);
return MicroSeconds (duration);
}
在函数CalculateTxDuration中,duration的计算方法。
那么,假如你开启4次握手机制,那么rts的duration如何计算呢?
也就是当你生成pacp文件,用wiresharp打开时,看到rts帧中,那个duration是怎么得到的呢?
如下图中17342 是怎么得到的呢?

你需要知道应用层的包是如何封装的,这涉及到计算机网络的知识。这里以上面的包大小举例说明,packet =2000bytes.

上图中可以看到:data—>udp(8)—>ip(20)—>llc(8)—>mac (28)包封装过程
ip和udp封装包头大小,一般计算机网络书中有介绍。llc 这个没搞懂为啥是8个。mac数据帧可以看下图:

一共40字节,但是地址4,qos,ht不用。ns3中使用的是non qos mac。
好了,我们开始计算,但是还需要看一个代码在mac-low.cc:
void
MacLow::SendRtsForPacket (void)
{
NS_LOG_FUNCTION (this);
/* send an RTS for this packet. */
WifiMacHeader rts;
rts.SetType (WIFI_MAC_CTL_RTS);
rts.SetDsNotFrom ();
rts.SetDsNotTo ();
rts.SetNoRetry ();
rts.SetNoMoreFragments ();
rts.SetAddr1 (m_currentHdr.GetAddr1 ());
rts.SetAddr2 (m_self);
WifiTxVector rtsTxVector = GetRtsTxVector (m_currentPacket, &m_currentHdr);
Time duration = Seconds (0); WifiPreamble preamble;
//standard says RTS packets can have GF format sec 9.6.0e.1 page 110 bullet b 2
if ( m_phy->GetGreenfield()&& m_stationManager->GetGreenfieldSupported (m_currentHdr.GetAddr1 ()))
preamble= WIFI_PREAMBLE_HT_GF;
else if (rtsTxVector.GetMode().GetModulationClass () == WIFI_MOD_CLASS_HT)
preamble= WIFI_PREAMBLE_HT_MF;
else
preamble=WIFI_PREAMBLE_LONG; if (m_txParams.HasDurationId ())
{
duration += m_txParams.GetDurationId ();
}
else
{
WifiTxVector dataTxVector = GetDataTxVector (m_currentPacket, &m_currentHdr);
duration += GetSifs ();
duration += GetCtsDuration (m_currentHdr.GetAddr1 (), rtsTxVector);
duration += GetSifs ();
duration += m_phy->CalculateTxDuration (GetSize (m_currentPacket, &m_currentHdr),
dataTxVector, preamble);
duration += GetSifs ();
duration += GetAckDuration (m_currentHdr.GetAddr1 (), dataTxVector);
}
rts.SetDuration (duration); Time txDuration = m_phy->CalculateTxDuration (GetRtsSize (), rtsTxVector, preamble);
Time timerDelay = txDuration + GetCtsTimeout (); NS_ASSERT (m_ctsTimeoutEvent.IsExpired ());
NotifyCtsTimeoutStartNow (timerDelay);
m_ctsTimeoutEvent = Simulator::Schedule (timerDelay, &MacLow::CtsTimeout, this); Ptr<Packet> packet = Create<Packet> ();
packet->AddHeader (rts);
WifiMacTrailer fcs;
packet->AddTrailer (fcs); ForwardDown (packet, &rts, rtsTxVector,preamble);
}

公式就是上面这个代码中提取出来的。sifs查这个802.11-2012中上图
duration += GetSifs (); 10
duration += GetCtsDuration (m_currentHdr.GetAddr1 (), rtsTxVector); cts:14*8+192=304
duration += GetSifs (); 10
duration += m_phy->CalculateTxDuration (GetSize (m_currentPacket, &m_currentHdr), dataTxVector, preamble); 2064*8+192=16704
duration += GetSifs ();10
duration += GetAckDuration (m_currentHdr.GetAddr1 (), dataTxVector); ack:14*8+192=304
duration = 10+304+10+16704+10+304=17342
结果符合wiresharp中那个duration。
NS3中一些难以理解的常数的更多相关文章
- 通过作用域链解析js函数一些难以理解的的作用域问题
基本原理 js函数在执行时,系统会创建一个隐式的属性scope,scope中存储的是函数的作用域链. 通过对这个scope的分析,就能解释JavaScript中许多难以理解的问题: 例1: funct ...
- Java中hashcode的理解
Java中hashcode的理解 原文链接http://blog.csdn.net/chinayuan/article/details/3345559 怎样理解hashCode的作用: 以 java. ...
- RxSwift 系列(九) -- 那些难以理解的概念
前言 看完本系列前面几篇之后,估计大家也还是有点懵逼,本系列前八篇也都是参考RxSwift官方文档和一些概念做的解读.上几篇文章概念性的东西有点多,一时也是很难全部记住,大家脑子里面知道有这么个概念就 ...
- 难以理解的AQS(下)
在上一篇博客,简单的说下了AQS的基本概念,核心源码解析,但是还有一部分内容没有涉及到,就是AQS对条件变量的支持,这篇博客将着重介绍这方面的内容. 条件变量 基本应用 我们先通过模拟一个消费者/生产 ...
- Java的内部类真的那么难以理解?
01 前言 昨天晚上,我把车停好以后就回家了.回家后才发现手机落在车里面了,但外面太冷,冷到骨头都能感受到寒意——实在是不想返回一趟去取了(小区的安保还不错,不用担心被砸车玻璃),于是打定主意过几个小 ...
- 对于新手来说,Python 中有哪些难以理解的概念?
老手都是从新手一路过来的,提起Python中难以理解的概念,可能很多人对于Python变量赋值的机制有些疑惑,不过对于习惯于求根究底的程序员,只有深入理解了某个事物本质,掌握了它的客观规律,才能得心应 ...
- js中的闭包理解一
闭包是一个比较抽象的概念,尤其是对js新手来说.书上的解释实在是比较晦涩,对我来说也是一样. 但是他也是js能力提升中无法绕过的一环,几乎每次面试必问的问题,因为在回答的时候.你的答案的深度,对术语的 ...
- Fouandation(NSString ,NSArray,NSDictionary,NSSet) 中常见的理解错误区
Fouandation 中常见的理解错误区 1.NSString //快速创建(实例和类方法) 存放的地址是 常量区 NSString * string1 = [NSString alloc]init ...
- linux中socket的理解
对linux中socket的理解 一.socket 一般来说socket有一个别名也叫做套接字. socket起源于Unix,都可以用“打开open –> 读写write/read –> ...
随机推荐
- Linux 运行jar包命令(Cent OS 7后台运行jar包)
Linux 运行jar包命令如下: 方式一 特点:当前ssh窗口被锁定,可按CTRL + C打断程序运行,或直接关闭窗口,程序退出 那如何让窗口不锁定? 方式二 java -jar shareniu. ...
- 利用os模块生成 文件夹和文件
需求: 使用os模块创建如下目录结构 glance/ ├── __init__.py ├── api │ ├── __init__.py │ ├── policy.py │ └── versions. ...
- MySQL login-path 本地快捷登陆
目录 1.什么是 login-path 2. 配置 login-path 2.2.配置: 2.3.显示配置: 2.3.1.显示执行的login-path配置 2.3.2.显示所有的login-path ...
- Intent对象(组件间的通信原理)
Intent对象是一种可以在运行时动态绑定组件的关键技术,通过使用Intent对象,可以告诉系统你想要实现什么样的操作,也就是Intent对象里面包含的请求内容,请求再由Android操作系统接收到, ...
- TypeScript算法与数据结构-队列和循环队列
本文涉及的源码,均在我的github.有两部分队列和循环队列.有问题的可以提个issue,看到后第一时间回复 1. 队列(Queue) 队列也是一种线性的数据结构, 队列是一种先进先出的数据结构.类似 ...
- OCR文字识别笔记总结
OCR的全称是Optical Character Recognition,光学字符识别技术.目前应用于各个领域方向,甚至这些应用就在我们的身边,比如身份证的识别,交通路牌的识别,车牌的自动识别等等.本 ...
- Cow Exhibition POJ - 2184
题目地址:https://vjudge.net/problem/POJ-2184 下面的解释是从一个大佬那搬来的,讲的很清楚题意:给定一些奶牛,每个牛有s和f两个属性值,有正有负,要求选出一些牛,使得 ...
- Linux安装httpd
一.相关下载 1.httpd下载 官网下载:http://httpd.apache.org/ 或者 百度网盘链接: https://pan.baidu.com/s/1JPdU28tv6rePKJanB ...
- C#如何加载程序运行目录外的程序集 (转)
---恢复内容开始--- 尼玛,为了这个问题,纠结到差点吐出干血,赶紧记下来! 源地址:http://blog.csdn.net/dyllove98/article/details/9391325 我 ...
- zimg服务器图片数据迁移后,图片404异常的问题解决
由于zimg特殊的图片存储结构及图片命名规则,其迁移数据应该当相当简单的,仅把对应的存储图片数据的文件夹复制即可.往往简单的东西总会有一些成本在里面,下面是我简单的迁移测试过程中遇到的一些问题,仅供参 ...