CF1007B Pave the Parallelepiped 容斥原理
2 seconds
256 megabytes
standard input
standard output
You are given a rectangular parallelepiped with sides of positive integer lengths AA, BB and CC.
Find the number of different groups of three integers (aa, bb, cc) such that 1≤a≤b≤c1≤a≤b≤c and parallelepiped A×B×CA×B×C can be paved with parallelepipeds a×b×ca×b×c. Note, that all small parallelepipeds have to be rotated in the same direction.
For example, parallelepiped 1×5×61×5×6 can be divided into parallelepipeds 1×3×51×3×5, but can not be divided into parallelepipeds 1×2×31×2×3.
The first line contains a single integer tt (1≤t≤1051≤t≤105) — the number of test cases.
Each of the next tt lines contains three integers AA, BB and CC (1≤A,B,C≤1051≤A,B,C≤105) — the sizes of the parallelepiped.
For each test case, print the number of different groups of three points that satisfy all given conditions.
4
1 1 1
1 6 1
2 2 2
100 100 100
1
4
4
165
In the first test case, rectangular parallelepiped (1,1,1)(1,1,1) can be only divided into rectangular parallelepiped with sizes (1,1,1)(1,1,1).
In the second test case, rectangular parallelepiped (1,6,1)(1,6,1) can be divided into rectangular parallelepipeds with sizes (1,1,1)(1,1,1), (1,1,2)(1,1,2), (1,1,3)(1,1,3) and (1,1,6)(1,1,6).
In the third test case, rectangular parallelepiped (2,2,2)(2,2,2) can be divided into rectangular parallelepipeds with sizes (1,1,1)(1,1,1), (1,1,2)(1,1,2), (1,2,2)(1,2,2) and (2,2,2)(2,2,2).
这题目其实求的就是a的因子乘b的因子乘c的因子
所以重点是算出a,b,c的因子
但是中间会出现重复的情况,比如(1,1,2),(1,2,1)是同一种情况
所以我们还要用容斥原理去掉这种情况
情况分为四种:a,b重负的情况;a,c重复的情况;b,c重复的情况;a,b,c重复的情况
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define A 0
#define B 1
#define C 2
#define AB 3
#define BC 4
#define AC 5
#define ABC 6
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5;
const int mod = 10000007;
typedef long long ll;
ll t, a, b, c, kt[5],p[10], nu[maxn+10], num[maxn+10];
ll gcd( ll a, ll b) {
return b==0?a:gcd(b,a%b);
}
map<ll,ll>mm;
vector<ll> va, vb, vc;
void init() { //预处理每个数因子的数量
for( ll i = 1; i <= maxn; i ++ ) {
for( ll j = i; j <= maxn; j +=i ) {
nu[j] ++;
}
}
va.push_back(A); va.push_back(AB);
va.push_back(AC); va.push_back(ABC); vb.push_back(B); vb.push_back(AB);
vb.push_back(BC); vb.push_back(ABC); vc.push_back(C); vc.push_back(AC);
vc.push_back(BC); vc.push_back(ABC);
} ll cal3( ll x) {
ll res = 0;
res += x + x*(x-1) + x*(x-1)*(x-2)/6;//三部分取相同,两部分取相同,三部分都不同
return res;
} ll cal2( ll x ) {
ll res = 0;
res += x + x*(x-1)/2;//两部分相同,两部分不同
return res;
}
int main() {
init();
cin >> t;
while(t--)
{
cin >> a >> b >> c;
ll ab = gcd(a,b), bc = gcd(b,c), ac = gcd(a,c);
ll abc = gcd(ab,c);
ll nABC = nu[abc];
ll nAB = nu[ab] - nABC, nBC = nu[bc] - nABC, nAC = nu[ac] - nABC;
ll nA = nu[a] - nAB - nAC - nABC, nB = nu[b] - nAB - nBC - nABC;
ll nC = nu[c] - nAC - nBC - nABC;
num[ABC] = nABC;
num[AB] = nAB, num[AC] = nAC, num[BC] = nBC;
num[A] = nA, num[B] = nB, num[C] = nC;
ll ans = 0;
mm.clear();
for( ll i = 0; i < va.size(); i ++ ) {
for( ll j = 0; j < vb.size(); j ++ ) {
for( ll k = 0; k < vc.size(); k ++ ) {
kt[0] = va[i], kt[1] = vb[j], kt[2] = vc[k];
sort( kt, kt+3 );
ll x = kt[0], y = kt[1], z = kt[2];
ll tmp = 0;
for( ll l = 0; l < 3; l ++ ) {
tmp=1ll*tmp*maxn+1ll*kt[l];
}
if( mm[tmp] ) continue;///打标记去重
mm[tmp] = 1;
if( x == y && y == z )
ans += cal3(num[x]);
else if( x == y )
ans += num[z]*cal2(num[x]);
else if( y == z )
ans += num[x]*cal2(num[y]);
else ans += num[x]*num[y]*num[z];
}
}
}
cout << ans << endl;
}
return 0;
}
CF1007B Pave the Parallelepiped 容斥原理的更多相关文章
- [CF1007B]Pave the Parallelepiped[组合计数+状态压缩]
题意 \(t\) 组询问,给你 \(A, B, C\) ,问有多少组三元组 \((a, b, c)\) 满足他们任意排列后有: \(a|A,\ b|B,\ c|C\) . \(A,B,C,t\leq ...
- codeforces 1007B Pave the Parallelepiped
codeforces 1007B Pave the Parallelepiped 题意 题解 代码 #include<bits/stdc++.h> using namespace std; ...
- CF1008D Pave the Parallelepiped
容斥原理 解法一: 其他容斥原理的题也可以用这种思想 先把$A$,$B$,$C$分解因数 一种很暴力的想法是,将这些因数分成若干个集合(画出韦恩图),然后对有序数组的三个数分别枚举其位于哪一个集合中 ...
- Pave the Parallelepiped CodeForces - 1007B (计数)
大意: 给定A,B,C, 求有多少个三元组$(a,b,c)$, 满足$a \le b \le c$, 且以若干个$(a,b,c)$为三边的长方体能填满边长(A,B,C)的长方体. 暴力枚举出$A,B, ...
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
随机推荐
- Transformations 方块转换 USACO 模拟 数组 数学 耐心
1006: 1.2.2 Transformations 方块转换 时间限制: 1 Sec 内存限制: 128 MB提交: 10 解决: 7[提交] [状态] [讨论版] [命题人:外部导入] 题目 ...
- StarUML 3.0 破解方法
首先在我这里下载 StarUML3.0 破解替换文件app.asar 链接:https://pan.baidu.com/s/1wDMKDQkKrE9D1c0YeXz0xg 密码:y65m 然后参照下 ...
- 【Java例题】5.1 多项式计算
1. 计算下列多项式的值. pn=an*x^n+...+a1*x+a0其中,"^"表示乘方. x.n以及ai(i=0,1,...,n-1)由键盘输入. package chapte ...
- 在vue项目中引入阿里图标库小记
使用Vue技术栈开发不仅效率高,而且很友好,而且还有很多基于vue的UI框架,例如:element等,但是这类框架美中不足的是,图标太少.为了解决这个问题,不得不引入第三方字体库,今天以阿里图标库为例 ...
- 伪分布式Spark + Hive on Spark搭建
Spark大数据平台有使用一段时间了,但大部分都是用于实验而搭建起来用的,搭建过Spark完全分布式,也搭建过用于测试的伪分布式.现在是写一遍随笔,记录一下曾经搭建过的环境,免得以后自己忘记了.也给和 ...
- html的一些基本属性介绍
一.html的属性类型: 1.常见标签属性: a.<h1>:align对其方式 例如:<h1 align="right"> hhhhh</ ...
- C语言编程入门之--第五章C语言基本运算和表达式-part2
5.1.4 再来一个C库函数getchar吸收回车键 回车键也是一个字符,在使用scanf的时候,输入完毕要按下回车键,这时候回车键也会被输入到stdin流中,会搞乱我们的程序. 注意:stdin是输 ...
- JavaWeb配置详解(结合框架SpringMVC)
详解 先说一说常识性的东西,我们的JavaWeb程序运行一开始走的是web.xml文件,这是我们的核心文件,可以说没有web.xml文件我们就无法运行项目,这个文件长什么样子,读者自己新建一个web项 ...
- 不相交路径[BZOJ1471] 容斥原理 拓扑排序
最近学容斥的时候又碰到一道类似的题目,所以想分享一个套路,拿这题来举例 [题目描述] 给出一个\(N(N\leq 150)\)个结点的有向无环简单图.给出4个不同的点\(a,b,c,d\),定义不相交 ...
- CentOS7.x 搭建 GitLab 教程
今天闲来无事,想起之前买了一个阿里云 ECS,一直闲置着没用,一时兴起就想搭个自己的 GitLab 玩玩,GitLab 官网也提供了安装教程,很简单,照着步骤一步步基本没什么问题,可能安装的过程中有一 ...