The Bakery

题意:将N个数分成K块, 每块的价值为不同数字的个数, 现在求总价值最大。

题解:dp[i][j] 表示 长度为j 且分成 i 块的价值总和。 那么 dp[i][j] = max(dp[i-1][x]+右边的数的贡献) ( 1<=x < j )。 如果每次都从左到右for过去一定会TLE, 所以我们用线段树来优化这个查询的过程, 并且用滚动数组消去第二维空间。

每次新扫到一个数T, 他就会在上一个T的位置+1 --- 现在这个T的位置产生数目加一的贡献。

然后每次扫完一次, 都用DP的值去重新建树。并且将DP的对应位置往右移动一位, 这样下次访问这个位置就是  dp[i-1][x-1] + dp[1][x-j]的价值了。 (j 为现在的位置)。

代码:

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define max3(a,b,c) max(a,max(b,c))
const int INF = 0x3f3f3f3f;
const LL mod = 1e9+;
typedef pair<int,int> pll;
const int N = ;
int dp[N], tree[N<<], lazy[N<<], pos[N], last[N];
void Push_Up(int rt){
tree[rt] = max(tree[rt<<], tree[rt<<|]);
}
void Push_Down(int rt){
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
tree[rt<<]+=lazy[rt];
tree[rt<<|]+=lazy[rt];
lazy[rt] = ;
}
}
void Build(int l, int r, int rt){
lazy[rt] = ;
if(l == r){
tree[rt] = dp[l-];
return ;
}
int m = l+r >> ;
Build(lson);
Build(rson);
Push_Up(rt);
}
void Update(int L, int R, int l, int r, int rt){
if(L <= l && r <= R){
lazy[rt]++;
tree[rt]++;
return;
}
int m = l+r >> ;
Push_Down(rt);
if(L <= m) Update(L,R,lson);
if(m < R) Update(L,R,rson);
Push_Up(rt);
}
int Query(int L, int R, int l, int r, int rt){
if(L <= l && r <= R) return tree[rt];
int ans = ;
int m = l+r >> ;
Push_Down(rt);
if(L <= m) ans = max(ans, Query(L,R,lson));
if(m < R) ans = max(ans, Query(L,R,rson));
return ans;
}
int main(){
memset(pos, , sizeof(pos));
memset(last, , sizeof(last));
int n, k, t;
scanf("%d%d",&n,&k);
for(int i = ; i <= n; i++){
scanf("%d",&t);
last[i] = pos[t] + ;
pos[t] = i;
}
for(int i = ; i <= k; i++){
Build(,n,);
for(int j = ; j <= n; j++){
Update(last[j],j,,n,);
dp[j] = Query(,j,,n,);
}
}
printf("%d\n", dp[n]);
return ;
}

CodeForces 834D The Bakery的更多相关文章

  1. Codeforces 834D The Bakery 【线段树优化DP】*

    Codeforces 834D The Bakery LINK 题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献 是第一次做线段树维护DP值的题 感觉还可以, ...

  2. Codeforces 834D - The Bakery(dp+线段树)

    834D - The Bakery 思路:dp[i][j]表示到第j个数为止分成i段的最大总和值. dp[i][j]=max{dp[i-1][x]+c(x+1,j)(i-1≤x≤j-1)},c(x+1 ...

  3. Codeforces 834D The Bakery - 动态规划 - 线段树

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  4. Codeforces 834D The Bakery【dp+线段树维护+lazy】

    D. The Bakery time limit per test:2.5 seconds memory limit per test:256 megabytes input:standard inp ...

  5. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  6. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  7. Codeforces 834E The Bakery【枚举+数位dp】

    E. Ever-Hungry Krakozyabra time limit per test:1 second memory limit per test:256 megabytes input:st ...

  8. Codeforces 833B The Bakery dp线段树

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  9. codeforces 707B B. Bakery(水题)

    题目链接: B. Bakery 题意: 是否存在一条连接特殊和不特殊的边,存在最小值是多少; 思路: 扫一遍所有边: AC代码: #include <iostream> #include ...

随机推荐

  1. 【Docker】unauthorized: incorrect username or password

    昨天朋友推荐玩玩 Docker.虽然之前就听过,但一直不清楚干嘛的,也没去搞过,虽然前段时间就装了,但一直没打开.这两天刚开始熟悉,就遇到了点小问题.一番 Google 之后解决了,记录一下. CLI ...

  2. ASP.NET Core on K8S深入学习(2)部署过程解析与Dashboard

    上一篇<K8S集群部署>中搭建好了一个最小化的K8S集群,这一篇我们来部署一个ASP.NET Core WebAPI项目来介绍一下整个部署过程的运行机制,然后部署一下Dashboard,完 ...

  3. 记录一下我做Udacity 的Data Scientist Nano Degree Project

    做项目的时候看了别人的blog,决定自己也随手记录下在做项目中遇到的好的小知识点. 最近在做Udacity的Data Scientist Nano Degree Project的Customer_Se ...

  4. 02.Mybatis的动态代理方式实现增删改查

    动态代理的方式实现增删改查: 通过约定的方式定位sql语句 约定 > 配置文件 > 硬编码 约定的目标是省略掉通过硬编码的方式定位sql的代码,通过接口直接定位出sql语句,以下代码为通过 ...

  5. 9.源码分析---SOFARPC是如何实现故障剔除的?

    SOFARPC源码解析系列: 1. 源码分析---SOFARPC可扩展的机制SPI 2. 源码分析---SOFARPC客户端服务引用 3. 源码分析---SOFARPC客户端服务调用 4. 源码分析- ...

  6. 【C++】string::substr函数

    形式:s.substr(p, n) 返回一个string,包含字符串s中从p开始的n个字符的拷贝(p的默认值是0,n的默认值是s.size() - p,即不加参数会默认拷贝整个s) int main( ...

  7. 一文读懂JS中的原型和原型链(图解)

    讲原型的时候,我们应该先要记住以下几个要点,这几个要点是理解原型的关键: 1.所有的引用类型(数组.函数.对象)可以自由扩展属性(除null以外). 2.所有的引用类型都有一个’_ _ proto_ ...

  8. c#小灶——常量、变量和赋值

    常量 常量很好理解,和变量相对,就是不会变的量.比如,1就是常量,3.6也是常量,‘a’也是常量,“aaaaa”也是常量,只是不同类型.这些都是表面上一眼就看出来的常量,还有一种表面上看不出来的常量, ...

  9. Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(集群版)

    上篇文章Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(单机版)讲了在 idea 里以单机的方式启动zookeeper,这篇介绍一下以集群的方式启动. 集群方式启动,才会真正 ...

  10. 状压DP概念 及例题(洛谷 P1896 互不侵犯)

    状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...