题意

在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖。每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示。

如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接敲掉它;若i>1,则你必须先敲掉第i-1层的第j和第j+1块砖。

你现在可以敲掉最多M块砖,求得分最多能有多少。

一道dp题,一开始想到的是一行一行dp然而发现,选[ i , j ]就要选[ i-1 , j+1]和[ i ,j ]上面所有的方块,似乎不满足无后效性,那怎么办呢?

我们发现输入文件时这样的

4 5
2 2 3 4
8 2 7
2 3
49

我们可以去思考是不是可以一列一列dp,从n列向1列dp这样就没有后效性了,我们可以定义状态f[i][j][k]表示当前在第i列选了j个,总共选了k个,状态转移方程为

f[i][j][k]=max(f[i+1][t][k-j]+s[i][j],f[i][j][k])

t>=j-1&&t<=n-i

s[i][j]表示第j列前i个的和

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,ans,f[55][55][3000],a[55][55],s[55][55];
int main(){
scanf("%d %d",&n,&m);
memset(f,-0x3f,sizeof(f));
f[n+1][0][0]=0;
for(int i=1;i<=n;++i){
for(int j=1;j<=n-i+1;++j){
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;++i){
for(int j=1;j<=n-i+1;++j){
s[j][i]=s[j][i-1]+a[i][j];
}
}
for(int i=n;i>=1;--i){
for(int j=0;j<=n-i+1;++j){
for(int k=j;k<=m;++k){
for(int t=max(j-1,0);t<=n-i;++t){
f[i][j][k]=max(f[i+1][t][k-j]+s[i][j],f[i][j][k]);
}
}
}
}
for(int i=1;i<=n;++i){
for(int j=1;j<=n-i+1;++j){
ans=max(ans,f[i][j][m]);
}
}
printf("%d",ans);
return 0;
}

yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块的更多相关文章

  1. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  2. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  3. 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)

    传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...

  4. P1437 [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  5. luogu P1437 [HNOI2004]敲砖块

    三角形向右对齐后 你想打掉一个砖块,那么你必须打掉右上方的三角形,前缀和维护 若是第i列若是k个,那么它右边的那一列至少选了k-1个 f[i][j][k] 表示从后向前选到第 i 列第j个一共打了k次 ...

  6. [洛谷1437&Codevs1257]敲砖块<恶心的dp>

    题目链接:https://www.luogu.org/problem/show?pid=1437#sub http://codevs.cn/problem/1257/ 不得不说,这个题非常的恶心,在初 ...

  7. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  8. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

  9. 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)

    题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...

随机推荐

  1. 疯子的算法总结(二) STL Ⅰ 算法 ( algorithm )

    写在前面: 为了能够使后续的代码具有高效简洁的特点,在这里讲一下STL,就不用自己写堆,写队列,但是做为ACMer不用学的很全面,我认为够用就好,我只写我用的比较多的. 什么是STL(STl内容): ...

  2. 关于AJAX的跨域问题

    最近过年的这几天在做毕业设计的时候遇到了一个关于AJAX的跨域问题,本来我是想要用一下聚合数据平台提供的天气预报的接口的,然后做一个当地的天气情况展示,但是在使用AJAX的时候,被告知出现错误了. 这 ...

  3. CodeGlance右侧窗口缩略图消失不见

    说明下问题,idea中的CodeGlance插件会在右侧显示缩略图,可以快速定位代码.今天遇到个问题升级了插件后右侧窗口消失.经过卸载插件,重启,reset一系列操作后还是没能恢复. 能去搜索引擎搜索 ...

  4. node命令行工具之实现项目工程自动初始化的标准流程

    一.目的 传统的前端项目初始流程一般是这样: 可以看出,传统的初始化步骤,花费的时间并不少.而且,人工操作的情况下,总有改漏的情况出现.这个缺点有时很致命. 甚至有马大哈,没有更新项目仓库地址,导致提 ...

  5. 如何以python风格高逼格的改成购物车逻辑

    之前有一篇博文写到关于购物车的业务逻辑,分别运用cookie和redis存储未登录和登录用户的购物车数据,虽然已经很好的完成了业务逻辑,但是会发现代码的冗余很严重,也不够具有python特色,今天就让 ...

  6. 在linux中部署项目并创建shell脚本

    1.首先要在idea中父工程maven包下执行clean生成的target包 2.执行package打包,打包时候讲test勾去掉 3.将target包中生成的jar包cp出来 此处注意打包时必须要保 ...

  7. linux细节操作的

    一>安装mysql 可以直接在linux系统下载 下载之前要安装wget插件 下载命令 wget 后面跟安装软件的url 比如mysql wget http://repo.mysql.com/m ...

  8. [Spring cloud 一步步实现广告系统] 22. 广告系统回顾总结

    到目前为止,我们整个初级广告检索系统就初步开发完成了,我们来整体回顾一下我们的广告系统. 整个广告系统编码结构如下: mscx-ad 父模块 主要是为了方便我们项目的统一管理 mscx-ad-db 这 ...

  9. Hive 系列(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

  10. 写论文的第四天 Spark安装 使用sparkshell

    Spark分布式安装 Spark安装注意:需要和本机的hadoop版本对应 前往spark选择自己相对应的版本下载之后进行解压 命令:tar –zxf spark-2.4.0-bin-hadoop2. ...