K-近邻算法

一、算法概述

(1)采用测量不同特征值之间的距离方法进行分类

  • 优点: 精度高、对异常值不敏感、无数据输入假定。
  • 缺点: 计算复杂度高、空间复杂度高。

(2)KNN模型的三个要素

kNN算法模型实际上就是对特征空间的的划分。模型有三个基本要素:距离度量、K值的选择和分类决策规则的决定。

  • 距离度量

    距离定义为:

    \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}
    \]

    一般使用欧式距离:p = 2的个情况

    \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^2 \right) ^{\frac{1}{2}}
    \]

  • K值的选择

    一般根据经验选择,需要多次选择对比才可以选择一个比较合适的K值。

    如果K值太小,会导致模型太复杂,容易产生过拟合现象,并且对噪声点非常敏感。

    如果K值太大,模型太过简单,忽略的大部分有用信息,也是不可取的。

  • 分类决策规则

    一般采用多数表决规则,通俗点说就是在这K个类别中,哪种类别最后就判别为哪种类型

二、实施kNN算法

2.1 伪代码

  • 计算法已经类别数据集中的点与当前点之间的距离
  • 按照距离递增次序排序
  • 选取与但前点距离最小的k个点
  • 确定前k个点所在类别的出现频率
  • 返回前k个点出现频率最高的类别作为当前点的预测分类

#### 2.2 实际代码

def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]

三、实际案例:使用kNN算法改进约会网站的配对效果

我的朋友阿J一直使用在线约会软件寻找约会对象,他曾经交往过三种类型的人:

  • 不喜欢的人
  • 感觉一般的人
  • 非常喜欢的人

步骤:

  • 收集数据
  • 准备数据:也就是读取数据的过程
  • 分析数据:使用Matplotlib画出二维散点图
  • 训练算法
  • 测试算法
  • 使用算法

3.1 准备数据

样本数据共有1000个,3个特征值,共有4列数据,最后一列表示标签分类(0:不喜欢的人;1:感觉一般的人;2:非常喜欢的人)

特征

  • 每年获得的飞行常客里程数
  • 玩视频游戏所好的时间百分比
  • 每周消费的冰淇淋公斤数

部分数据如下:

40920	8.326976	0.953952	3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1
72993 10.141740 1.032955 1
35948 6.830792 1.213192 3
42666 13.276369 0.543880 3
67497 8.631577 0.749278 1
35483 12.273169 1.508053 3

读取数据(读取txt文件)

def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector

3.2 分析数据:使用Matplotlib创建散点图

初步分析
import matplotlib
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show()

因为有三种类型的分类,这样看的不直观,我们添加以下颜色

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show()

通过都多次的尝试后发现,玩游戏时间和冰淇淋这个两个特征关系比较明显

具体的步骤:

  • 分别将标签为1,2,3的三种类型的数据分开
  • 使用matplotlib绘制,并使用不同的颜色加以区分
datingDataType1 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==1])
datingDataType2 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==2])
datingDataType3 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==3]) fig, axs = plt.subplots(2, 2, figsize = (15,10))
axs[0,0].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
axs[0,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
axs[1,0].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
type1 = axs[1,1].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
type2 = axs[1,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
type3 = axs[1,1].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
axs[1,1].legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
axs[1,1].set_xlabel("玩视频游戏所耗时间百分比")
axs[1,1].set_ylabel("每周消费的冰淇淋公斤数") plt.show()

3.3 准备数据:数据归一化

通过上面的图形绘制,发现三个特征值的范围不一样,在使用KNN进行计算距离的时候,数值大的特征值就会对结果产生更大的影响。

数据归一化:就是将几组不同范围的数据,转换到同一个范围内。

公式: newValue = (oldValue - min)/(max - min)

def autoNorm(dataSet):
minVals = dataSet.min(0) # array([[1,20,3], [4,5,60], [7,8,9]]) min(0) = [1, 5, 3]
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normData = zeros(shape(dataSet))
m = dataSet.shape[0]
normData = (dataSet - tile(minVals, (m,1)))/tile(ranges,(m,1))
return normData

3.4 测试算法

我们将原始样本保留20%作为测试集,剩余80%作为训练集

def datingClassTest():
hoRatio = 0.20
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:,:],datingLabels[numTestVecs:],3)
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount)

运行结果

the total error rate is: 0.080000
16.0

四、源代码

from numpy import *
import operator
from os import listdir import matplotlib
import matplotlib.pyplot as plt ## KNN function
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] # read txt data
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0) # array([[1,20,3], [4,5,60], [7,8,9]]) min(0) = [1, 5, 3]
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normData = zeros(shape(dataSet))
m = dataSet.shape[0]
normData = (dataSet - tile(minVals, (m,1)))/tile(ranges,(m,1))
return normData def drawScatter1(datingDataMat, datingLabels):
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show() def drawScatter2(datingDataMat, datingLabels):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show() def drawScatter3(datingDataMat, datingLabels):
datingDataType1 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==1])
datingDataType2 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==2])
datingDataType3 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==3]) fig, axs = plt.subplots(2, 2, figsize = (15,10))
axs[0,0].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
axs[0,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
axs[1,0].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
type1 = axs[1,1].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
type2 = axs[1,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
type3 = axs[1,1].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
axs[1,1].legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
axs[1,1].set_xlabel("玩视频游戏所耗时间百分比")
axs[1,1].set_ylabel("每周消费的冰淇淋公斤数") plt.show() def datingClassTest():
hoRatio = 0.20
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:,:],datingLabels[numTestVecs:],3)
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount) datingDataMat, datingLabels = file2matrix("datingTestSet2.txt") drawScatter1(datingDataMat, datingLabels)
drawScatter2(datingDataMat, datingLabels)
drawScatter3(datingDataMat, datingLabels) datingClassTest()

[机器学习笔记]kNN进邻算法的更多相关文章

  1. 机器学习笔记(五) K-近邻算法

    K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否 ...

  2. kNN进邻算法

    一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就 ...

  3. 《机器学习实战》——k-近邻算法Python实现问题记录(转载)

    py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个k ...

  4. Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...

  5. 机器学习实战读书笔记(二)k-近邻算法

    knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训 ...

  6. 机器学习实践之K-近邻算法实践学习

    关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.n ...

  7. 机器学习实战(一)k-近邻算法

    转载请注明源出处:http://www.cnblogs.com/lighten/p/7593656.html 1.原理 本章介绍机器学习实战的第一个算法——k近邻算法(k Nearest Neighb ...

  8. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  9. 机器学习实战笔记(1)——k-近邻算法

    机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学习. ...

随机推荐

  1. GDAL集成对KML文件的支持

    目录 1. 正文 1.1. 编译LibKML 1.1.1. 第三方库支持 1.1.2. 编译错误 1.2. 配置GDAL 1.3. 链接问题 2. 参考 1. 正文 GDAL可以支持将KML作为矢量文 ...

  2. Java系列之注解

    Java系列之注解 Java 注解(Annotation)又称之为 Java 标注.元数据,是 Java 1.5 之后加入的一种特殊语法,通过注解可以标注 Java 中的类.方法.属性.参数.包等,可 ...

  3. css的简单使用

    css语法 id选择器: id 选择器可以为标有特定 id 的 HTML 元素指定特定的样式. HTML元素以id属性来设置id选择器,CSS 中 id 选择器以 "#" 来定义. ...

  4. ride.py打不开RF,而是打开pycharm

    标题中问题的解决方式: 进入到E:\soft\Python\Python36\Scripts,选中ride.py右键-打开方式选择python即可

  5. Spring Boot提供RESTful接口时的错误处理实践

    使用Spring Boot开发微服务的过程中,我们会使用别人提供的接口,也会设计接口给别人使用,这时候微服务应用之间的协作就需要有一定的规范. 基于rpc协议,我们一般有两种思路:(1)提供服务的应用 ...

  6. IDE安装完成无法打开,报错Fail load JVM DLL 问题与解决方案

    安装完成pycharm 在打开pycharm的时候出现报错 Fail load JVM DLL xxxx xxx. 解决方案 安装Microsoft Visual C++ 2010 Redistrib ...

  7. ESP8266开发之旅 网络篇⑮ DNSServer——真正的域名服务

    1. 前言     Arduino for esp8266中有两个DNS服务相关的库: ESP8266mDNS库 这个库是mDNS库,使用这个库的时候ESP8266可以在AP模式或是以STA模式接入局 ...

  8. 百万年薪python之路 -- 网络通信原理

    1. C/S B/S架构 C: Client 客户端 B: Browse 浏览器 S: Server 服务端 C/S架构: 基于客户端与服务端之间的通信 eg: QQ,微信,LOL,DNF等需要安装A ...

  9. 一次PHP代码上线遇到的问题

    exception ‘CDbException’ with message ‘The table “pms_goods” for active record class “PmsGoods” cann ...

  10. 数据库系统(六)---MySQL语句及存储过程

    一.DDL.DML.DCL常用语句 1.DDL(Data Definition Language)数据库定义语言 (1)数据库模式定义 #创建数据库 create database if exsite ...