【AHOI 2013】差异
Problem
Description
给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀。求
\(\sum_{1\leqslant i<j\leqslant n}len(T_i)+len(T_j)-2\times len(lcp(T_i,T_j))\)
其中,\(len\)(a) 表示字符串 \(a\) 的长度,\(lcp\)(a,b) 表示字符串 \(a\) 和字符串 \(b\) 的最长公共前缀。
Input Format
一行,一个字符串 \(S\) 。
Output Format
一行,一个整数,表示所求值。
Sample
Input
cacao
Output
54
Range
\(2\leqslant n\leqslant 5\times 10^5\) ,且均为小写字母。
Algorithm
后缀自动机
Mentality
转换成统计每个字符对答案的贡献。
对于后缀自动机上的某个节点,便代表了某个等价类里的一堆连续子串,我们发现,这些子串中的字符产生贡献当且仅当两个后缀 \(T_1, T_2\) 一个经过当前节点,而另一个不经过。
那么这些字符产生的贡献就是经过当前节点的后缀数乘上不经过的后缀数。
Code
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define LL long long
#define go(x, i, v) for (int i = hd[x], v = to[i]; i; v = to[i = nx[i]])
LL read() {
long long x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) w = ch == '-' ? -1 : 1, ch = getchar();
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
}
const int Max_n = 5e5 + 5, M = 26;
int n;
long long ans;
int num[Max_n << 1], nu[Max_n << 1];
char S[Max_n];
namespace SAM {
int las = 1, cnt = 1;
struct node {
int len, fa, ch[M];
} k[Max_n << 1];
void add(int c) {
int p = las, np = las = ++cnt;
k[np].len = k[p].len + 1, nu[np] = 1;
for (; p && !k[p].ch[c]; p = k[p].fa) k[p].ch[c] = np;
if (!p)
k[np].fa = 1;
else {
int q = k[p].ch[c];
if (k[q].len == k[p].len + 1)
k[np].fa = q;
else {
int nq = ++cnt;
k[nq] = k[q], k[nq].len = k[p].len + 1;
k[q].fa = k[np].fa = nq;
for (; p && k[p].ch[c] == q; p = k[p].fa) k[p].ch[c] = nq;
}
}
}
} // namespace SAM
using namespace SAM;
bool cmp(int a, int b) { return k[a].len < k[b].len; }
int main() {
scanf("%s", S + 1);
n = strlen(S + 1);
for (int i = n; i >= 1; i--) add(S[i] - 'a');
for (int i = 1; i <= cnt; i++) num[i] = i;
sort(num + 1, num + cnt + 1, cmp);
for (int i = cnt; i; i--) {
int x = num[i];
nu[k[x].fa] += nu[x];
ans += 1ll * nu[x] * (n - nu[x]) * (k[x].len - k[k[x].fa].len);
}
cout << ans;
}
【AHOI 2013】差异的更多相关文章
- [BZOJ 3238] [AHOI 2013] 差异 【后缀数组 + 单调栈】
题目链接:BZOJ - 3238 题目分析 显然,这道题就是求任意两个后缀之间的LCP的和,这与后缀数组的联系十分明显. 求出后缀数组后,求出字典序相邻两个后缀的LCP,即 Height 数组. 那么 ...
- [AHOI 2013]差异
Description 题库链接 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\sum_{1\leqslant i< ...
- BZOJ3238:[AHOI 2013]差异
求一个字符串的∑ ∑ len[i] + len[j] - 2 * lcp(i, j),其中i,j表示从i,j开始的后缀. 方法一:SA+单调栈,自行yy. 方法二:SAM构造出来,然后每个状态对答案的 ...
- BZOJ 3236 AHOI 2013 作业 莫队+树状数组
BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...
- 【BZOJ 3238】【AHOI 2013】差异
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 后缀数组裸题但是\(5\times 10^5\)貌似常数有点大就过不了?(我的sa常数那么大想 ...
- BZOJ 3236 AHOI 2013 作业 莫队算法
题目大意:给出一些数,问在一个区间中不同的数值有多少种,和在一个区间中不同的数值有多少个. 思路:因为没有改动,所以就想到了莫队算法.然后我写了5K+的曼哈顿距离最小生成树,然后果断T了.(100s的 ...
- 解题:AHOI 2013 作业
题面 emmm......我把莫队扔到了杂题里,因为感觉局限挺大的=.= 这题是莫队维护信息+分块查询答案,都是两者的基本操作,复杂度$O(m$ $sqrt(n)+n$ $sqrt(m))$ 所以为啥 ...
- [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列
\(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...
- [NOI 2015]品酒大会
Description 题库链接 \(n\) 杯鸡尾酒排成一行,其中第 \(i\) 杯酒 (\(1 \leq i \leq n\)) 被贴上了一个标签 \(s_i\),每个标签都是 \(26\) 个小 ...
随机推荐
- odoo12 修行基础篇之 添加明细字段 (二)
前一篇介绍了如何在视图和表单中添加字段.本节内容,我们讨论下如何在明细中加字段. 我想在销售页面明细中增加税额字段,这在表sale.order.line中已经存在,在此仅用来演示. odoo的明细一般 ...
- 【2018寒假集训Day 8】【最小生成树】Prim和Kruskal算法模板
Luogu最小生成树模板题 Prim 原理与dijkstra几乎相同,每次找最优的点,用这个点去松弛未连接的点,也就是用这个点去与未连接的点连接. #include<cstdio> #in ...
- 在linux和windows中使用selenium
在linux和windows中使用selenium 一. selenium(浏览的人你们多大呀?是AI?) selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法 ...
- ubuntu 1806 添加 kali 源
最近需要使用 kali 源安装一些软件: 配置 sources.list,根据如下链接:http://mirrors.ustc.edu.cn/help/kali.html 获取 公钥:apt-key ...
- MySQL 格式化时间 成字符串
创建个表: CREATE TABLE `x02基本信息` ( `ID` varchar(32) NOT NULL COMMENT '系统内记录的唯一标识,供系统内部使用.', `名称` varchar ...
- c++ use curllib send REST API request to Web server
E.g and explaination: Pre-condition: Server is running and can reciever CURL command with json forma ...
- 【Luogu P3174 】[HAOI2009]毛毛虫
前言: 虽然很多人和我想法一样 ,但我还是不要脸地写了这题解 题目: 链接 大意: 在一棵树上取一条最长链以及它所连接的结点总共的结点个数 思路: 取链: 用树形\(DP\)就可以轻而易举的解决这个问 ...
- ASI的其他使用方法
ASI 除了设置代理监听以外还可以设置block进行监听 如果同时设置block和实现了代理方法 请求过程中 block和代理方法都会调用 一般 代理方法 优先block方法调用 第3种方式调用
- Netty学习——Thrift的入门使用
Netty学习——Thrift的入门使用 希望你能够,了解并使用它.因为它是一个效率很高的框架 官网地址:http://thrift.apache.org/ 1.Thrift数据类型 一门技术如果需要 ...
- 失去循环标签的Python,我这样实现跳出外层循环
不完美的Python 自从各类Python大火,感觉天上地下哪儿都有Python的一席之地,Python功夫好啊-但python有些细节上缺少其他语言的便利.今天我们就来举几个例子. 跳出外层循环 大 ...