深度学习VGG16模型核心模块拆解
原文连接:https://blog.csdn.net/qq_40027052/article/details/79015827
注:这篇文章是上面连接作者的文章。在此仅作学习记录作用。
如今深度学习发展火热,但很多优秀的文章都是基于经典文章,经典文章的一句一词都值得推敲很分析。此外,深度学习虽然一直被人诟病缺乏足够令人信服的理论,但不代表我们不能感性分析,下面我们将对2014年夺得ImageNet的定位第一和分类第二的VGG网络进行分析,在此过程中更多的是对这篇经典文章的感性分析,希望和大家共同交流产生共鸣。
论文下载地址:https://arxiv.org/pdf/1409.1556.pdf
开篇首先引用一段来自知乎对同年GoogleNet和VGG的描述:
“GoogLeNet和VGG的Classification模型从原理上并没有与传统的CNN模型有太大不同。大家所用的Pipeline也都是:训练的时候各种数据Augmentation(裁剪,不同大小,调亮度,饱和度,对比度,偏色),裁剪送入CNN模型,Softmax,Backprop。测试的时候,尽量吧测试数据又各种Augmenting(裁剪,不同大小),把测试数据各种Augmenting后在训练的不同模型上的结果再继续Averaging出最后的结果”
需要注意的是,在VGGNet的6组实验中,后面的4个网络均使用了pre-trained model A的某些层来做参数初始化。虽然作者没有提出该方法带来的性能增益,但是我认为是很大的。不过既然是开篇,先来看看VGG的特点:
- 小卷积核。作者将卷积核全部替换为3x3(极少用了1x1);
- 小池化核。相比AlexNet的3x3的池化核,VGG全部为2x2的池化核;
- 层数更深特征图更宽。基于前两点外,由于卷积核专注于扩大通道数、池化专注于缩小宽和高,使得模型构架上更深和更宽的同时,计算量的增加放缓;
- 全连接转卷积。网络
深度学习VGG16模型核心模块拆解的更多相关文章
- NVIDIA GPUs上深度学习推荐模型的优化
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...
- 一个基于深度学习回环检测模块的简单双目 SLAM 系统
转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12634631.html 写在前面 最近在搞本科毕设,关于基于深度学 ...
- 在排序模型方面,点评搜索也经历了业界比较普遍的迭代过程:从早期的线性模型LR,到引入自动二阶交叉特征的FM和FFM,到非线性树模型GBDT和GBDT+LR,到最近全面迁移至大规模深度学习排序模型。
https://mp.weixin.qq.com/s/wjgoH6-eJQDL1KUQD3aQUQ 大众点评搜索基于知识图谱的深度学习排序实践 原创: 非易 祝升 仲远 美团技术团队 前天
- Linux学习-额外(单一)核心模块编译
编译前注意事项 由于我们的核心原本就有提供很多的核心工具给硬件开发商来使用, 而硬件开发商也需要针对核心 所提供的功能来设计他们的驱动程序模块,因此, 我们如果想要自行使用硬件开发商所提供的模块 来进 ...
- MXNET:深度学习计算-模型参数
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数. 之前我们一直在使用默认的初始函数,net.initialize(). from mxnet import init, nd ...
- TensorFlow-谷歌深度学习库 图片处理模块
Module: tf.image 这篇文章主要介绍TensorFlow处理图片这一块,这个模块和之前说过的文件I/O处理一样也是主要从python导过来的. 通过官方文档,我们了解到这个模块主要有一下 ...
- MXNET:深度学习计算-模型构建
进入更深的层次:模型构造.参数访问.自定义层和使用 GPU. 模型构建 在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层.其中第一层的输出大小为 256,即隐藏 ...
- 深度学习之神经网络核心原理与算法-caffe&keras框架图片分类
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: ht ...
- Apple的Core ML3简介——为iPhone构建深度学习模型(附代码)
概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone ...
随机推荐
- hikari连接池属性详解
hikari连接池属性详解 一.主要配置 1.dataSourceClassName 这是DataSourceJDBC驱动程序提供的类的名称.请查阅您的特定JDBC驱动程序的文档以获取此类名称,或参阅 ...
- Java虚拟机堆和栈详细解析,以后面试再也不怕问jvm了!
堆 Java堆是和Java应用程序关系最密切的内存空间,几乎所有的对象都放在其中,并且Java堆完全是自动化管理,通过垃圾收集机制,垃圾对象会自动清理,不需自己去释放. 根据垃圾回收机制的不同,Jav ...
- 使用python实现哈希表、字典、集合
哈希表 哈希表(Hash Table, 又称为散列表),是一种线性表的存储结构.哈希表由一个直接寻址表和一个哈希函数组成.哈希函数h(k)将元素关键字k作为自变量,返回元素的存储下标. 简单哈希函数: ...
- 使用keepalived做High Available(HA)
原文内容来自于LZ(楼主)的印象笔记,如出现排版异常或图片丢失等问题,可查看当前链接:https://app.yinxiang.com/shard/s17/nl/19391737/eab34383-d ...
- Wiki语法大全
原文链接:wiki语法大全 编辑一个维客页面十分容易.只要点击页面上方的“编辑本页”或右侧的[编辑]链接即可修改该页,或点击“讨论本页”然后再点击“编辑页面”来讨论该页面.点击后您就会看到一个包含那 ...
- 对JDK动态代理的模拟实现
对JDK动态代理的模拟 动态代理在JDK中的实现: IProducer proxyProduec = (IProducer)Proxy.newProxyInstance(producer.getCla ...
- Linux-3.14.12内存管理笔记【伙伴管理算法(4)】
此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现.页面释放的函数入口是__free_page(),其实则是一个宏定义. 具体实现: [file:/include/linu ...
- 2018 经典的CVPR 关于ImageCaptioning论文
1. SemStyle: Learning to Generate Stylised Image Captions using Unaligned Text(2018 CVPR) 主要研 ...
- STM32基本GPIO操作:按键输入(扫描+外部中断)
(涉及专有名词较多,难免解释不到位,若有错误还请指出,谢谢!) 硬件连接图如下: 一.扫描 思路是在main函数中通过死循环来扫描端口电平状态检测,以此判断按键是否按下.实现较为简单. 1.初始化(注 ...
- Builder模式的目的是解耦构建过程,为什么要用内部类?
还没有看过Builder模式的作用,看过一篇介绍Builder模式的文章,这里是关于Builder模式的思考:思考是否有比新建一个内部类更好的方法,首先想到的是 package xyz.n490808 ...