http://blog.csdn.net/zwan0518/article/details/12219055
http://blog.csdn.net/v_july_v/article/details/6124989
http://blog.csdn.net/v_JULY_v/article/details/6114226
http://www.cnblogs.com/skywang12345/p/3245399.html

二叉搜索树:
因为,一棵由n个结点,随机构造的二叉查找树的高度为logn,所以,二叉查找树的一般操作(insert、delete、search)的执行时间为O(logn)。但二叉查找树若退化成了一棵具有n个结点的线性链后,则这些操作最坏情况运行时间为O(n)。
----算法导论有定理:一棵高度为h的二叉搜索树,一般操作的执行时间为O(h)。 在算法导论中 lgn = log2n,在大话数据结构里的表示:logn = log2n
红黑树:
1、算法导论中的定理:一棵含有n个节点的红黑树的高度至多为2log(n+1)。

红黑树虽然本质上是一棵二叉查找树,但它在二叉查找树的基础上增加了着色和相关的性质使得红黑树相对平衡,从而保证了红黑树的查找、插入、删除的时间复杂度最坏为O(logn)。

但它是如何保证一棵n个结点的红黑树的高度始终保持在logn的呢?这就引出了红黑树的5个性质:
1、每个结点要么是红的要么是黑的;
2、根结点是黑的;
3、每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的;
4、每个红色节点必须有两个黑色的子节点;
5、从任一节点到其每个叶子节点的所有路径都包含相同数目的黑色节点(这个性质保证了--最长路径长度不超过最短路径长度的2倍)。

正是红黑树的这5条性质,使一棵n个结点的红黑树始终保持了logn的高度,从而也就解释了上面所说的“红黑树的查找、插入、删除的时间复杂度最坏为O(logn)”这一结论成立的原因。

红黑树是一种自平衡二叉查找树。它的统计性能要好于平衡二叉树(AVL树),但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除等操作。

红黑树的应用:
1、Java中的TreeSet和TreeMap,C++ STL中的set、map,以及Linux虚拟内存的管理
2、用红黑树管理进程控制块epoll在内核中的实现,用红黑树管理事件块;
3、Nginx中,用红黑树管理timer等;

与AVL树的区别:
1、红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。
1、红黑树和AVL树都能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。
2、由于设计,红黑树的任何不平衡都会在三次旋转之内解决。AVL树增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
红黑树是一种比较宽泛化的平衡树,没AVL的平衡要求高,同时他的插入删除都能在O(logN)的时间内完成,而且对于其性质的维护,插入至多只需要进行2次旋转就可以完成,对于删除,至多只需要三次就可以完成,所以其统计性能要比AVL树好。最坏情况下,AVL树有最多O(logN)次旋转,而红黑树最多三次

在查找方面:
  红黑树的性质(最长路径长度不超过最短路径长度的2倍),其查找代价基本维持在O(logN)左右,但在最差情况下(最长路径是最短路径的2倍少1),比AVL要略逊色一点。
  AVL是严格平衡的二叉查找树(平衡因子不超过1)。查找过程中不会出现最差情况的单支树。因此查找效率最好,最坏情况都是O(logN)数量级的。

所以,综上:
  AVL比RBtree更加平衡,但是AVL的插入和删除会带来大量的旋转,执行的操作更多一些,效率更低一些。 所以如果插入和删除比较多的情况,应该使用RBtree, 如果查询操作比较多,应该使用AVL。

AVL是一种高度平衡的二叉树,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果场景中对插入删除不频繁,只是对查找特别有要求,AVL还是优于红黑的。

红黑树以及与AVL树的区别的更多相关文章

  1. 为什么HashMap使用红黑树而不使用AVL树

    为什么HashMap使用红黑树而不使用AVL树? 红黑树适用于大量插入和删除:因为它是非严格的平衡树:只要从根节点到叶子节点的最长路径不超过最短路径的2倍,就不用进行平衡调节 AVL 树是严格的平衡树 ...

  2. B树,B+树,红黑树应用场景AVL树,红黑树,B树,B+树,Trie树

    B B+运用在file system database这类持续存储结构,同样能保持lon(n)的插入与查询,也需要额外的平衡调节.像mysql的数据库定义是可以指定B+ 索引还是hash索引. C++ ...

  3. 红黑树和AVL树的区别(转)

    add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 ...

  4. 转:红黑树和AVL树(平衡二叉树)区别

    本文转载至链接:https://blog.csdn.net/u010899985/article/details/80981053 一.AVL树(平衡二叉树) (1)简介 AVL树是带有平衡条件的二叉 ...

  5. 吐血整理:二叉树、红黑树、B&B+树超齐全,快速搞定数据结构

    前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及 ...

  6. [BinaryTree] AVL树、红黑树、B/B+树和Trie树的比较

    转自:AVL树.红黑树.B/B+树和Trie树的比较 AVL树 最早的平衡二叉树之一.AVL是一种高度平衡的二叉树,所以通常的结果是,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应 ...

  7. 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

    http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...

  8. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  9. 二叉树,平衡树,红黑树,B~/B+树汇总

    二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树 ...

随机推荐

  1. 脱壳系列_2_IAT加密壳_详细版解法1(含脚本)

    1 查看壳程序信息 使用ExeInfoPe 分析: 发现这个壳的类型没有被识别出来,Vc 6.0倒是识别出来了,Vc 6.0的特征是 入口函数先调用GetVersion() 2 用OD找OEP 拖进O ...

  2. 【Mac】Mac 使用 zsh 后, mvn 命令无效

    如题-- 解决方法: 将 maven 的环境变量配置放到 .zshrc 文件中. 参考链接: http://ruby-china.org/topics/23158 https://yq.aliyun. ...

  3. 二进制文件安装k8s所需要的证书服务

    利用二进制文件安装etcd所需要的证书服务 CFSSL是CloudFlare开源的一款PKI/TLS工具. CFSSL 包含一个命令行工具 和一个用于 签名,验证并且捆绑TLS证书的 HTTP API ...

  4. Redis 学习笔记(篇七):Redis 持久化

    因为 Redis 是内存数据库,它将自己的数据储存在内存里面,所以如果不想办法将储存在内存中的数据库状态保存到磁盘里面,那么一旦服务器进程退出,服务器中的数据也将会丢失,为了解决这个问题,Redis ...

  5. codeforces 339 D.Xenia and Bit Operations(线段树)

    这个题目属于线段树的点更新区间查询,而且查的是整个区间,其实不用写query()函数,只需要输出根节点保存的值就可以了. 题意: 输入n,m表示有2^n个数和m个更新,每次更新只把p位置的值改成b,然 ...

  6. Wtm携手LayUI -- .netcore 开源生态我们是认真的!

    经过WTM团队和LayUI团队多次深入协商,双方于2019年7月29日在北京中国国际展览中心正式达成战略合作意向, 双方签署了战略合作框架协议,LayUI团队承诺使用WTM框架的任何项目都可以免费使用 ...

  7. 国内CDH的MAVEN代理

    在编译CDH版本的各个开源软件时,需要从cdh-repo下载对应的jar包,但发现下载速度非常慢,甚至有时候出现下载异常的情况. 下面是国内可用的.速度非常快的一个maven代理仓库,亲测可用: ht ...

  8. Codeforces Round #574 (Div. 2)——C. Basketball Exercise(简单DP)

    题目传送门 题意: 输入n,给出两组均为 n个数字的数组a和b,轮流从a和b数组中取出一个数字,要求严格按照当前所选数字的数组下标比上一个所选数字的数组下标更大,计算能够取出的数字加起来的总和最大能为 ...

  9. hadoop的基础思想

    转载 http://www.superwu.cn/2014/01/10/963 1.1.1. hadoop的核心思想 Hadoop包括两大核心,分布式存储系统和分布式计算系统.1.1.1.1. 分布式 ...

  10. 【KakaJSON手册】03_JSON转Model_03_key处理

    有时候,服务器返回的JSON数据的key跟客户端模型的属性名可能不一致,比如客户端遵守驼峰规范叫做nickName,而服务器端返回的JSON可能叫做nick_name.这时候为了保证数据转换成功,就需 ...