Python股票历史数据的获取
获取股票数据的接口很多,免费的接口有新浪、网易、雅虎的API接口,收费的就是证券公司及相应的公司提供的接口。
收费试用的接口一般提供的数据只是最近一年或三年的,限制比较多,除非money足够多。
所以本文主要讨论的是免费数据的获取及处理。
国内提供股票数据的接口如sinajs,money.163.com,yahoo,它们提供的API接口不同,每家提供的数据大同小异,可以选择一家的数据来处理。
目前,国内有一个开源的财经数据获取包,封装了上述的接口,不需关系数据源从哪去,它会优先从最快的源来取数据。使用起来非常方便。它是TuShare,具体的安装使用见链接。
本文基于TuShare的数据获取基础上开发,介绍如何获取A股所有股票的历史K线数据。
一、获取A股上市公司列表
import tushare as ts
import pandas as pd
def download_stock_basic_info():
try:
df = ts.get_stock_basics()
#直接保存到csv
print 'choose csv'
df.to_csv('stock_basic_list.csv');
print 'download csv finish'
股票列表中包括当前A股的2756只股票的基本信息,包括:
code,代码
name,名称
industry,所属行业
area,地区
pe,市盈率
outstanding,流通股本
totals,总股本(万)
totalAssets,总资产(万)
liquidAssets,流动资产
fixedAssets,固定资产
reserved,公积金
reservedPerShare,每股公积金
eps,每股收益
bvps,每股净资
pb,市净率
timeToMarket,上市日期
二、获取单只股票的历史K线
获取的日K线数据包括:
date : 交易日期 (index)
open : 开盘价(前复权,默认)
high : 最高价(前复权,默认)
close : 收盘价(前复权,默认)
low : 最低价(前复权,默认)
open_nfq : 开盘价(不复权)
high_nfq : 最高价(不复权)
close_nfq : 收盘价(不复权)
low_nfq : 最低价(不复权)
open_hfq : 开盘价(后复权)
high_hfq : 最高价(后复权)
close_hfq : 收盘价(后复权)
low_hfq : 最低价(后复权)
volume : 成交量
amount : 成交金额
下载股票代码为code的股票历史K线,默认为上市日期到今天的K线数据,支持递增下载,如本地已下载股票60000的数据到2015-6-19,再次运行则会从6.20开始下载,追加到本地csv文件中。
# 默认为上市日期到今天的K线数据
# 可指定开始、结束日期:格式为"2015-06-28"
def download_stock_kline(code, date_start='', date_end=datetime.date.today()):
code = util.getSixDigitalStockCode(code) # 将股票代码格式化为6位数字
try:
fileName = 'h_kline_' str(code) '.csv'
writeMode = 'w'
if os.path.exists(cm.DownloadDir fileName):
#print (">>exist:" code)
df = pd.DataFrame.from_csv(path=cm.DownloadDir fileName)
se = df.head(1).index #取已有文件的最近日期
dateNew = se[0] datetime.timedelta(1)
date_start = dateNew.strftime("%Y-%m-%d")
#print date_start
writeMode = 'a'
if date_start == '':
se = get_stock_info(code)
date_start = se['timeToMarket']
date = datetime.datetime.strptime(str(date_start), "%Y%m%d")
date_start = date.strftime('%Y-%m-%d')
date_end = date_end.strftime('%Y-%m-%d')
# 已经是最新的数据
if date_start >= date_end:
df = pd.read_csv(cm.DownloadDir fileName)
return df
print 'download ' str(code) ' k-line >>>begin (', date_start u' 到 ' date_end ')'
df_qfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 前复权
df_nfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 不复权
df_hfq = ts.get_h_data(str(code), start=date_start, end=date_end) # 后复权
if df_qfq is None or df_nfq is None or df_hfq is None:
return None
df_qfq['open_no_fq'] = df_nfq['open']
df_qfq['high_no_fq'] = df_nfq['high']
df_qfq['close_no_fq'] = df_nfq['close']
df_qfq['low_no_fq'] = df_nfq['low']
df_qfq['open_hfq']=df_hfq['open']
df_qfq['high_hfq']=df_hfq['high']
df_qfq['close_hfq']=df_hfq['close']
df_qfq['low_hfq']=df_hfq['low']
if writeMode == 'w':
df_qfq.to_csv(cm.DownloadDir fileName)
else:
df_old = pd.DataFrame.from_csv(cm.DownloadDir fileName)
# 按日期由远及近
df_old = df_old.reindex(df_old.index[::-1])
df_qfq = df_qfq.reindex(df_qfq.index[::-1])
df_new = df_old.append(df_qfq)
#print df_new
# 按日期由近及远
df_new = df_new.reindex(df_new.index[::-1])
df_new.to_csv(cm.DownloadDir fileName)
#df_qfq = df_new
print '\ndownload ' str(code) ' k-line finish'
return pd.read_csv(cm.DownloadDir fileName)
except Exception as e:
print str(e)
return None
## private methods ##
#######################
# 获取个股的基本信息:股票名称,行业,地域,PE等,详细如下
# code,代码
# name,名称
# industry,所属行业
# area,地区
# pe,市盈率
# outstanding,流通股本
# totals,总股本(万)
# totalAssets,总资产(万)
# liquidAssets,流动资产
# fixedAssets,固定资产
# reserved,公积金
# reservedPerShare,每股公积金
# eps,每股收益
# bvps,每股净资
# pb,市净率
# timeToMarket,上市日期
# 返回值类型:Series
def get_stock_info(code):
try:
sql = "select * from %s where code='%s'" % (STOCK_BASIC_TABLE, code)
df = pd.read_sql_query(sql, engine)
se = df.ix[0]
except Exception as e:
print str(e)
return se
三、获取所有股票的历史K线
# 获取所有股票的历史K线
def download_all_stock_history_k_line():
print 'download all stock k-line'
try:
df = pd.DataFrame.from_csv(cm.DownloadDir cm.TABLE_STOCKS_BASIC '.csv')
pool = ThreadPool(processes=10)
pool.map(download_stock_kline, df.index)
pool.close()
pool.join()
except Exception as e:
print str(e)
print 'download all stock k-line'
Map来自函数语言Lisp,map函数能够按序映射出另一个函数。
urls = ['http://www.yahoo.com', 'http://www.reddit.com']
results = map(urllib2.urlopen, urls)
有两个能够支持通过map函数来完成并行的库:一个是multiprocessing,另一个是鲜为人知但功能强大的子文件:multiprocessing.dummy。
Dummy就是多进程模块的克隆文件。唯一不同的是,多进程模块使用的是进程,而dummy则使用线程(当然,它有所有Python常见的限制)。
通过指定processes的个数来调用多线程。
附:文中用到的其他函数及变量,定义如下:
TABLE_STOCKS_BASIC = 'stock_basic_list'
DownloadDir = os.path.pardir '/stockdata/' # os.path.pardir: 上级目录
# 补全股票代码(6位股票代码)
# input: int or string
# output: string
def getSixDigitalStockCode(code):
strZero = ''
for i in range(len(str(code)), 6):
strZero = '0'
return strZero str(code)
Python股票历史数据的获取的更多相关文章
- 金融量化分析-python量化分析系列之---使用python获取股票历史数据和实时分笔数据
财经数据接口包tushare的使用(一) Tushare是一款开源免费的金融数据接口包,可以用于获取股票的历史数据.年度季度报表数据.实时分笔数据.历史分笔数据,本文对tushare的用法,已经存在的 ...
- 获取股票历史数据和当前数据的API
关键字:股票,stock,API,接口 1.获取股票当前数据 新浪数据接口:http://hq.sinajs.cn/list={code}.{code}替换为股票代码,沪市股票代码加前缀sh,深市股票 ...
- Python股票分析系列——自动获取标普500股票列表.p5
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第5部分.在本教程和接下来的几节中,我们将着手研究如何为更多公司提供大量的定价信息,以及如何一次 ...
- Python股票分析系列——系列介绍和获取股票数据.p1
本系列转载自youtuber sentdex博主的教程视频内容 https://www.youtube.com/watch?v=19yyasfGLhk&index=4&list=PLQ ...
- 使用tushare获取股票历史数据和实时分笔数据
使用tushare获取股票历史数据和实时分笔数据 财经数据接口包tushare的使用(一) Tushare是一款开源免费的金融数据接口包,可以用于获取股票的历史数据.年度季度报表数据.实时分笔数据 ...
- Python股票分析系列——基础股票数据操作(二).p4
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第4部分.在本教程中,我们将基于Adj Close列创建烛台/ OHLC图,这将允许我介绍重新采 ...
- python编写的自动获取代理IP列表的爬虫-chinaboywg-ChinaUnix博客
python编写的自动获取代理IP列表的爬虫-chinaboywg-ChinaUnix博客 undefined Python多线程抓取代理服务器 | Linux运维笔记 undefined java如 ...
- python封装configparser模块获取conf.ini值(优化版)
昨天晚上封装了configparser模块,是根据keyname获取的value.python封装configparser模块获取conf.ini值 我原本是想通过config.ini文件中的sect ...
- Python股票分析系列——基础股票数据操作(一).p3
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第3部分.在本教程中,我们将使用我们的股票数据进一步分解一些基本的数据操作和可视化.我们将要使用 ...
随机推荐
- OSI参考模型总结
OSI(Open System Interconnect),即开放式系统互联. 一般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的网络互连模型.下面我们将一层一层的看OSI协议. ...
- HTML5中像网页中保存cookie的实现
if(window.plus)//判断当前的设备是手机 window.localStorage.setItem("key","value");//设置值 win ...
- Mysql—下载安装与使用
一.安装前准备 检查是否已经安装过mysql,执行命令,显示结果为:bt-mysql57-5.7.26-1.el7.x86_64 [root@localhost ~]# rpm -qa | grep ...
- Mac打开Finder快捷键
摘要:目前网络中较常见的打开Finder的方法有两种,要么是先进入桌面状态,再使用快捷键command + shift + c:要么是通过下载软件来设置打开Finder的快捷键.都过于繁琐,其实有很简 ...
- JAVA笔试题(全解)
目录 一. Java基础部分................................................................. 9 1.一个".java& ...
- MSYQL主从复制-Gtid方式
目录 1.MYSQL主从复制-Gtid方式 1.环境准备 2.Master配置 3.Slave配置 4.报错&解决 我叫张贺,贪财好色.一名合格的LINUX运维工程师,专注于LINUX的学习和 ...
- 机器学习--用PCA算法实现三维样本降到二维
对于维数比较多的数据,首先需要做的事就是在尽量保证数据本质的前提下将数据中的维数降低.降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加 ...
- Java编译器的2点优化
优化1 对于byte/short/char三种类型来说,如果右侧赋值的数值没有超过范围,那么javac编译器将会自动隐含地为我们补上一个(byte)(short)(char). 如果没有超过左侧的范围 ...
- 【未完成】【oracle】单引号使用问题
‘-’不可以用 原因:
- Redis思维导图
Redis基本数据结构 1.String 1.1 数据结构 long len byte数组长度 long free 可用数组长度 char buff[] 数据内容 1.2 命令 键值:设置值通过字符串 ...