public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}

第一眼看这个代码,完全看不懂。
搜查资料之后才懂:
原来是 先 两个两个一组,求二进制1的个数,并且用两位二进制存储在原处,然后四个四个一组,求二进制位1的个数,再把它存储以4位二进制到原处。以此类推直到计算完成。不得不感叹这个算法设计的精妙之处。

Google了一番,没有查到为什么这个设计。知其然,不知其所以然。

于是,我决定模拟一下发明者的想法,为什么要这么算,怎么想到的,进行求解过程的分析:

想到面试题 5升和3升的杯子 取 4升水这种问题了,这种题不就是利用加减法来回计算吗?利用已知的来求解未知的。

我们平时数数是不是喜欢一对一对的数啊?
先观察存储的情况:

src store remark
00 00 这两位没有,那就用0存储
01 01 这两位只有一个1,就用1存储
10 01 这两位也只有一个1,也用1存储
11 10 这两位有两个1,用10存储

那么就一对一对的数,已知 src列 求出 store列?
列式计算:

  • 设 λ = i - x
  • 00 = 00 - 00;
  • 01 = 01 - 00;
  • 01 = 10 - 01;
  • 10 = 11 - 01;

那么 x 又如何通过i得到呢?

我们手无寸铁,对CPU来说也只有加法和移位的手段。假如发明者列出这种算式,敏感的他一下子
很容易看出来:
x=i>>>1
就这么简单
那么得到:
λ = i - (i>>>1)

那么i不止两位怎么处理?如果这个是最后的两位,那么移位之后后面一位二进制可以抹掉
而前面的移位会影响后面的最高位,那么把移出去的那一位消除:
i>>>1 & 01;
即为:01010101 01010101 01010101 01010101
λ = i - (i>>>1 & 0x55555555)

问题解决。
那么 计算了两位的如何计算4位的二进制位呢?
枚举第一步计算完成的所有的情况:

src target remark ref
0000 0000 = 0000 & 0011  
0001 0001 = 0001 & 0011 01 = 01 & 11
0010 0010 = 0010 & 0011 10 = 10 & 11
       
0100 0001 = 01 + 00  
0101 0010 = 01 + 01  
0110 0011 = 01 + 10  
       
1000 0010 = 10 + 00  
1001 0011 = 10 + 01  
1010 0100 = 10 + 10  

后面两组可以参照第一组的结果,那么可以推算
四位中低两位 bb = aabb & 0011,主要要计算与高两位的和:
已知可以用1100& aabb =aa00得到左边的值,但是多了两个00,那么要计算aa + bb:
可以 aabb>>>2 = 00aa(bb)只看这两位,移位多出去的被00消除,不影响后面的计算。
即:
λ =( i & 0x0011) + (i>>>2 & 0x0011)
也就是:
λ =( i & 0x33333333) + (i>>>2 & 0x33333333)

同理求8位里面的两边4位之和:
λ =( i + i>>>4) & 0x0F0F0F0F

求16位的两边之和:
λ = i + (i >>> 8);
由于二等分是8位,而8位一共有4份。
A B C D

(C>>>8) + D D处8位的结果最大为 0001 0000不会进位到C。
(B>>>8) + C C处8位的结果最大为 0001 0000不会进位到B。
(A>>>8) + B B处8位的结果最大为 0001 0000不会进位到B。
A + 0 A处最大结果为 0000 1000

得到
A A+B B+C C+D
最后是求32位全部的内容也就是求(A+B)+(C+D)
A A+B B+C C+D
+
0 0 A A+B

也就是
λ= i + (i >>> 16)
A A+B A+B+C A+B+C+D
A+B+C+D最大也就32个:
0000 0000 0000 0000 0000 0000 0010 0000
0000 0000 0000 0000 0000 0000 0011 1111 = 0x3F
之所以要return i&0x3F,就是把前面抹干净。

Java源码 Integer.bitCount实现过程的更多相关文章

  1. Java源码——Integer

    最近在研究java的源代码,但是由于自己英语水平有限,所以想使用中文注释的方式把源码里的方法全部重写 一遍,下面是楼主整理出来的一小部分.我把整体的项目托管到GitHub上了,欢迎大家前去交流学习. ...

  2. JDK源码 Integer.bitCount(i)

    1.问题:输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 2.解决方法很多,JDK提供了一种,如下图 /** * Returns the number of one-bits in ...

  3. Java源码解释之Integer.bitCount

    Java中的Integer.bitCount(i)的返回值是i的二进制表示中1的个数.源码如下: public static int bitCount(int i) { // HD, Figure 5 ...

  4. Java源码解读(一)——HashMap

    HashMap作为常用的一种数据结构,阅读源码去了解其底层的实现是十分有必要的.在这里也分享自己阅读源码遇到的困难以及自己的思考. HashMap的源码介绍已经有许许多多的博客,这里只记录了一些我看源 ...

  5. java 源码编译

    Java语言的“编译期”其实是一段“不确定”的操作过程,因为它可能是指一个前端编译器(叫“编译器的前段”更准确)——把*.java文件转变成*.class文件的过程:也可能是虚拟机的后端运行期编译器( ...

  6. MyBatis 源码分析 - 配置文件解析过程

    * 本文速览 由于本篇文章篇幅比较大,所以这里拿出一节对本文进行快速概括.本篇文章对 MyBatis 配置文件中常用配置的解析过程进行了较为详细的介绍和分析,包括但不限于settings,typeAl ...

  7. 从Java源码到Java字节码

    Java最主流的源码编译器,javac,基本上不对代码做优化,只会做少量由Java语言规范要求或推荐的优化:也不做任何混淆,包括名字混淆或控制流混淆这些都不做.这使得javac生成的代码能很好的维持与 ...

  8. java源码——0~9十个数字不重复地使用使加法表达式成立

    这个问题是在我写个的几个博客里较为复杂的一个.首先,先看看整个问题的表述. 星号表示0~9的一个数字,而且不允许重复,使得下面的加法表达式成立.输出所有结果. ※ ※ ※ ※ ※    +  2   ...

  9. 如何阅读Java源码 阅读java的真实体会

    刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心.   说到技术基础,我打个比 ...

随机推荐

  1. Mach-O在内存中符号表地址、字符串表地址的计算

    KSCrash 是一个用于 iOS 平台的崩溃捕捉框架,最近读了其部分源码,在 KSDynamicLinker 文件中有一个函数,代码如下: /** Get the segment base addr ...

  2. asp.net core3.0 mvc 用 autofac

    好久没有写文章了,最近在用.net core3.0,一些开发中问题顺便记录: 1.首先nuget引入 Autofac Autofac.Extensions.DependencyInjection 2. ...

  3. Emacs 入门(https://www.zybuluo.com/eqyun/note/40788)

    下载地址 基本操作(C=Ctrl, M=Alt) C-f 向右移动一个字符 C-b 向左移动一个字符 C-n 移动到下一行 C-p 移动到上一行 M-f 向右移动一个词[对中文是移动到下一个标点符号] ...

  4. 配置Redis(远程访问及授权设置)

    配置Redis(远程访问及授权设置) 1.将redis.conf里面的bind 127.0.0.1这一行注释掉,添加自己服务器的IP 2. 还有,找到protected-mode这行, 将改为yes. ...

  5. JavaScript总结(一)

    一.JavaScript 简介 1.1 .什么是 JavaScript? JavaScript 的简称:JS. JavaScript 是一个脚本.(不需要经过编译器编译的语言就叫做脚本) JavaSc ...

  6. webpack原理

    webpack早就已经在前端领域大放异彩,会使用和优化webpack也已经是中.高级工程师必备技能,在此基础之上再对webpack的原理进行理解和掌握,必定会在未来的开发中事半功倍.若是对于webpa ...

  7. Spring Boot (八): Mybatis 增强工具 MyBatis-Plus

    1. 简介 在上一篇文章<Spring Boot (七): Mybatis极简配置> 中我们介绍了在 Spring Boot 中 Mybatis 的基础使用方式,其中有一部分美中不足的是 ...

  8. Android中内存泄露与如何有效避免OOM总结

    一.关于OOM与内存泄露的概念 我们在Android开发过程中经常会遇到OOM的错误,这是因为我们在APP中没有考虑dalvik虚拟机内存消耗的问题. 1.什么是OOM OOM:即OutOfMemoe ...

  9. Cocos Creator 3D 打砖块教程(二) | 子弹发射与摄像机平滑移动

    在线体验链接: http://example.creator-star.cn/block3d/ 前面一篇文章,我们讲了[打砖块]游戏中的3D物体的场景布局.材质资源.物理刚体与碰撞组件,接下来本篇文章 ...

  10. php微信支付v3版本签名生成

    前几天需要对接微信支付卡包营销活动需要对接微信新版SDKv3版 签名生成规则,微信的官方文档里面说明的还算可以吧,不过个人觉得不太理想- -.  自己调试的时候调试了半天才找了错误原因. https: ...