public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}

第一眼看这个代码,完全看不懂。
搜查资料之后才懂:
原来是 先 两个两个一组,求二进制1的个数,并且用两位二进制存储在原处,然后四个四个一组,求二进制位1的个数,再把它存储以4位二进制到原处。以此类推直到计算完成。不得不感叹这个算法设计的精妙之处。

Google了一番,没有查到为什么这个设计。知其然,不知其所以然。

于是,我决定模拟一下发明者的想法,为什么要这么算,怎么想到的,进行求解过程的分析:

想到面试题 5升和3升的杯子 取 4升水这种问题了,这种题不就是利用加减法来回计算吗?利用已知的来求解未知的。

我们平时数数是不是喜欢一对一对的数啊?
先观察存储的情况:

src store remark
00 00 这两位没有,那就用0存储
01 01 这两位只有一个1,就用1存储
10 01 这两位也只有一个1,也用1存储
11 10 这两位有两个1,用10存储

那么就一对一对的数,已知 src列 求出 store列?
列式计算:

  • 设 λ = i - x
  • 00 = 00 - 00;
  • 01 = 01 - 00;
  • 01 = 10 - 01;
  • 10 = 11 - 01;

那么 x 又如何通过i得到呢?

我们手无寸铁,对CPU来说也只有加法和移位的手段。假如发明者列出这种算式,敏感的他一下子
很容易看出来:
x=i>>>1
就这么简单
那么得到:
λ = i - (i>>>1)

那么i不止两位怎么处理?如果这个是最后的两位,那么移位之后后面一位二进制可以抹掉
而前面的移位会影响后面的最高位,那么把移出去的那一位消除:
i>>>1 & 01;
即为:01010101 01010101 01010101 01010101
λ = i - (i>>>1 & 0x55555555)

问题解决。
那么 计算了两位的如何计算4位的二进制位呢?
枚举第一步计算完成的所有的情况:

src target remark ref
0000 0000 = 0000 & 0011  
0001 0001 = 0001 & 0011 01 = 01 & 11
0010 0010 = 0010 & 0011 10 = 10 & 11
       
0100 0001 = 01 + 00  
0101 0010 = 01 + 01  
0110 0011 = 01 + 10  
       
1000 0010 = 10 + 00  
1001 0011 = 10 + 01  
1010 0100 = 10 + 10  

后面两组可以参照第一组的结果,那么可以推算
四位中低两位 bb = aabb & 0011,主要要计算与高两位的和:
已知可以用1100& aabb =aa00得到左边的值,但是多了两个00,那么要计算aa + bb:
可以 aabb>>>2 = 00aa(bb)只看这两位,移位多出去的被00消除,不影响后面的计算。
即:
λ =( i & 0x0011) + (i>>>2 & 0x0011)
也就是:
λ =( i & 0x33333333) + (i>>>2 & 0x33333333)

同理求8位里面的两边4位之和:
λ =( i + i>>>4) & 0x0F0F0F0F

求16位的两边之和:
λ = i + (i >>> 8);
由于二等分是8位,而8位一共有4份。
A B C D

(C>>>8) + D D处8位的结果最大为 0001 0000不会进位到C。
(B>>>8) + C C处8位的结果最大为 0001 0000不会进位到B。
(A>>>8) + B B处8位的结果最大为 0001 0000不会进位到B。
A + 0 A处最大结果为 0000 1000

得到
A A+B B+C C+D
最后是求32位全部的内容也就是求(A+B)+(C+D)
A A+B B+C C+D
+
0 0 A A+B

也就是
λ= i + (i >>> 16)
A A+B A+B+C A+B+C+D
A+B+C+D最大也就32个:
0000 0000 0000 0000 0000 0000 0010 0000
0000 0000 0000 0000 0000 0000 0011 1111 = 0x3F
之所以要return i&0x3F,就是把前面抹干净。

Java源码 Integer.bitCount实现过程的更多相关文章

  1. Java源码——Integer

    最近在研究java的源代码,但是由于自己英语水平有限,所以想使用中文注释的方式把源码里的方法全部重写 一遍,下面是楼主整理出来的一小部分.我把整体的项目托管到GitHub上了,欢迎大家前去交流学习. ...

  2. JDK源码 Integer.bitCount(i)

    1.问题:输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 2.解决方法很多,JDK提供了一种,如下图 /** * Returns the number of one-bits in ...

  3. Java源码解释之Integer.bitCount

    Java中的Integer.bitCount(i)的返回值是i的二进制表示中1的个数.源码如下: public static int bitCount(int i) { // HD, Figure 5 ...

  4. Java源码解读(一)——HashMap

    HashMap作为常用的一种数据结构,阅读源码去了解其底层的实现是十分有必要的.在这里也分享自己阅读源码遇到的困难以及自己的思考. HashMap的源码介绍已经有许许多多的博客,这里只记录了一些我看源 ...

  5. java 源码编译

    Java语言的“编译期”其实是一段“不确定”的操作过程,因为它可能是指一个前端编译器(叫“编译器的前段”更准确)——把*.java文件转变成*.class文件的过程:也可能是虚拟机的后端运行期编译器( ...

  6. MyBatis 源码分析 - 配置文件解析过程

    * 本文速览 由于本篇文章篇幅比较大,所以这里拿出一节对本文进行快速概括.本篇文章对 MyBatis 配置文件中常用配置的解析过程进行了较为详细的介绍和分析,包括但不限于settings,typeAl ...

  7. 从Java源码到Java字节码

    Java最主流的源码编译器,javac,基本上不对代码做优化,只会做少量由Java语言规范要求或推荐的优化:也不做任何混淆,包括名字混淆或控制流混淆这些都不做.这使得javac生成的代码能很好的维持与 ...

  8. java源码——0~9十个数字不重复地使用使加法表达式成立

    这个问题是在我写个的几个博客里较为复杂的一个.首先,先看看整个问题的表述. 星号表示0~9的一个数字,而且不允许重复,使得下面的加法表达式成立.输出所有结果. ※ ※ ※ ※ ※    +  2   ...

  9. 如何阅读Java源码 阅读java的真实体会

    刚才在论坛不经意间,看到有关源码阅读的帖子.回想自己前几年,阅读源码那种兴奋和成就感(1),不禁又有一种激动. 源码阅读,我觉得最核心有三点:技术基础+强烈的求知欲+耐心.   说到技术基础,我打个比 ...

随机推荐

  1. 品Spring:bean定义上梁山

    认真阅读,收获满满,向智慧又迈进一步... 技术不枯燥,先来点闲聊 先说点好事高兴一下.前段时间看新闻说,我国正式的空间站建设已在进行当中.下半年,长征五号B运载火箭将在海南文昌航天发射场择机将空间站 ...

  2. JavaScript自动播放背景音乐

    问题描述 js控制audio自动播放音乐时报错: Uncaught (in promise) DOMException 我的报错之前的代码: <audio id="myaudio&qu ...

  3. 数据结构之二叉树篇卷一 -- 建立二叉树(With Java)

    一.定义二叉树节点类 package tree; public class Node<E> { public E data; public Node<E> lnode; pub ...

  4. C语言入门-函数

    一.初见函数 求出1到10.20到30和35到45的三个的和 #include <stdio.h> // 定义一个函数 void sum(int begin, int end) { int ...

  5. Maven中jar包冲突的解决方式

    现象 创建一个maven工程,引入spring-context包. <dependency> <groupId>org.springframework</groupId& ...

  6. 让视频丝滑流畅——N/A通用补帧傻瓜解决方案

    补帧就是字面意思,把24帧的视频通过算法即时补偿到更高的帧数,获得更优秀的观感体验 索尼大法brivia电视的中高端产品线中的motionflow技术,都可以实现硬件补帧,只需要把动态打开,相应的画面 ...

  7. 把功能强大的Spring EL表达式应用在.net平台

    Spring EL 表达式是什么? Spring3中引入了Spring表达式语言—SpringEL,SpEL是一种强大,简洁的装配Bean的方式,他可以通过运行期间执行的表达式将值装配到我们的属性或构 ...

  8. Thinkphp5.0终章

    thinkphp5.0最终总结 前期刚开始我是跟着b站上的千峰教育的视频走的,一路上做笔记进行深化与实际操作,中间因为不会开报错,并且视频里面也没有讲到怎么弄报错,因为是新手,那种出错了却不知道错在哪 ...

  9. spring-boot-plus XSS跨站脚本攻击处理

    XSS跨站脚本攻击处理 XSS:Cross Site Scripting 跨站脚本攻击(XSS),是目前最普遍的Web应用安全漏洞.这类漏洞能够使得攻击者嵌入恶意脚本代码到正常用户会访问到的页面中,当 ...

  10. 洛谷 P3745 [六省联考2017]期末考试

    题目描述 有 nnn 位同学,每位同学都参加了全部的 mmm 门课程的期末考试,都在焦急的等待成绩的公布. 第 iii 位同学希望在第 tit_iti​ 天或之前得知所有课程的成绩.如果在第 tit_ ...