[LeetCode] 685. Redundant Connection II 冗余的连接之 II
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.
The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.
Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3
Example 2:
Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
684. Redundant Connection 的拓展,684题给的是无向图,只需要删掉组成环的最后一条边即可,检测环就行了。这题给的是有向图,就复杂多了,有多种情况存在,比如例子1就是无环,但是有入度为2的结点3。再比如例子2是有环,但是没有入度为2的结点。还有一种情况例子没有给出,就是既有环,又有入度为2的结点。
解法:Union find
There are two cases for the tree structure to be invalid.
1) A node having two parents;
including corner case: e.g. [[4,2],[1,5],[5,2],[5,3],[2,4]]
2) A circle exists
If we can remove exactly 1 edge to achieve the tree structure, a single node can have at most two parents.
1) Check whether there is a node having two parents.
If so, store them as candidates A and B, and set the second edge invalid.
2) Perform normal union find.
If the tree is now valid
simply return candidate B
else if candidates not existing
we find a circle, return current edge;
else
remove candidate A instead of B.
Java:
class Solution {
public int[] findRedundantDirectedConnection(int[][] edges) {
int[] can1 = {-1, -1};
int[] can2 = {-1, -1};
int[] parent = new int[edges.length + 1];
for (int i = 0; i < edges.length; i++) {
if (parent[edges[i][1]] == 0) {
parent[edges[i][1]] = edges[i][0];
} else {
can2 = new int[] {edges[i][0], edges[i][1]};
can1 = new int[] {parent[edges[i][1]], edges[i][1]};
edges[i][1] = 0;
}
}
for (int i = 0; i < edges.length; i++) {
parent[i] = i;
}
for (int i = 0; i < edges.length; i++) {
if (edges[i][1] == 0) {
continue;
}
int child = edges[i][1], father = edges[i][0];
if (root(parent, father) == child) {
if (can1[0] == -1) {
return edges[i];
}
return can1;
}
parent[child] = father;
}
return can2;
}
int root(int[] parent, int i) {
while (i != parent[i]) {
parent[i] = parent[parent[i]];
i = parent[i];
}
return i;
}
}
Python:
# Time: O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n)
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x] def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root or \
y != y_root: # already has a father
return False
self.set[y_root] = x_root
self.count -= 1
return True class Solution(object):
def findRedundantDirectedConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
union_find = UnionFind(len(edges)+1)
for edge in edges:
if not union_find.union_set(*edge):
return edge
return []
C++:
class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> parent(n+1, 0), candA, candB;
// step 1, check whether there is a node with two parents
for (auto &edge:edges) {
if (parent[edge[1]] == 0)
parent[edge[1]] = edge[0];
else {
candA = {parent[edge[1]], edge[1]};
candB = edge;
edge[1] = 0;
}
}
// step 2, union find
for (int i = 1; i <= n; i++) parent[i] = i;
for (auto &edge:edges) {
if (edge[1] == 0) continue;
int u = edge[0], v = edge[1], pu = root(parent, u);
// Now every node only has 1 parent, so root of v is implicitly v
if (pu == v) {
if (candA.empty()) return edge;
return candA;
}
parent[v] = pu;
}
return candB;
}
private:
int root(vector<int>& parent, int k) {
if (parent[k] != k)
parent[k] = root(parent, parent[k]);
return parent[k];
}
};
类似题目:
[LeetCode] 684. Redundant Connection 冗余的连接
All LeetCode Questions List 题目汇总
[LeetCode] 685. Redundant Connection II 冗余的连接之 II的更多相关文章
- [LeetCode] 685. Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- LeetCode 685. Redundant Connection II
原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...
- [LeetCode] Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] 684. Redundant Connection 冗余的连接
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
- LN : leetcode 684 Redundant Connection
lc 684 Redundant Connection 684 Redundant Connection In this problem, a tree is an undirected graph ...
- LeetCode 684. Redundant Connection 冗余连接(C++/Java)
题目: In this problem, a tree is an undirected graph that is connected and has no cycles. The given in ...
- leetcode 684. Redundant Connection
We are given a "tree" in the form of a 2D-array, with distinct values for each node. In th ...
- Leetcode之并查集专题-684. 冗余连接(Redundant Connection)
Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...
- [LeetCode] Redundant Connection 冗余的连接
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
随机推荐
- 第9期《python3接口自动化测试》课程,6月29号开学!
2019年 第9期<python3接口自动化测试>课程,6月29号开学! 主讲老师:上海-悠悠 上课方式:QQ群视频在线教学 本期上课时间:6月29号-7月28号,每周六.周日晚上20:3 ...
- 4.Linq To Xml操作XML增删改查
转自https://www.cnblogs.com/wujy/p/3366812.html 对XML文件的操作在平时项目中经常要运用到,比如用于存放一些配置相关的内容:本文将简单运用Linq TO X ...
- linux中如何升级Python
一.使用wget 下载Python 安装包 我是在虚拟中当中安装的: wget http://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 报错: ...
- 【Selenium-WebDriver实战篇】基于java的selenium之验证码识别内容
==================================================================================================== ...
- IntToBinaryString
void IntToBinaryString(int devisor,char* pBinStr) { int i; int remainder; ;i<;i++) { remainder=de ...
- django-模板变量forloop
在django的模板中,有forloop这一模板变量,颇似php Smarty中的foreach.customers, Smarty foreach如下: {foreach name=customer ...
- 决策树——ID3
参考网址:https://www.cnblogs.com/further-further-further/p/9429257.html ID3算法 最优决策树生成 -- coding: utf-8 - ...
- 使用vue+mintui 开发省市区功能
做移动端的都知道 经常会有省市区这种三级联动的功能 今天研究了一下午~ 1.准备工作 vue+mintui+省市区的json数据 下载地址:https://github.com/chzm/addres ...
- vue 把后端返回的图片和url链接生成的二维码用canvas 合成一张图片
H5 页面在做某个活动的时候,有两种分享方式,一种是链接分享,一种是图片分享. 链接分享的话,如果是在微信里,就可引导用户利用微信浏览器自带的分享,根据sdk设置分享标题简介链接缩略图即可. 图片分享 ...
- BZOJ 3435: [Wc2014]紫荆花之恋
二次联通门 : BZOJ 3435: [Wc2014]紫荆花之恋 二次联通门 : luogu P3920 [WC2014]紫荆花之恋 /* luogu P3920 [WC2014]紫荆花之恋 怀疑人生 ...