[LeetCode] 685. Redundant Connection II 冗余的连接之 II
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.
The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.
Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3
Example 2:
Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
684. Redundant Connection 的拓展,684题给的是无向图,只需要删掉组成环的最后一条边即可,检测环就行了。这题给的是有向图,就复杂多了,有多种情况存在,比如例子1就是无环,但是有入度为2的结点3。再比如例子2是有环,但是没有入度为2的结点。还有一种情况例子没有给出,就是既有环,又有入度为2的结点。
解法:Union find
There are two cases for the tree structure to be invalid.
1) A node having two parents;
including corner case: e.g. [[4,2],[1,5],[5,2],[5,3],[2,4]]
2) A circle exists
If we can remove exactly 1 edge to achieve the tree structure, a single node can have at most two parents.
1) Check whether there is a node having two parents.
If so, store them as candidates A and B, and set the second edge invalid.
2) Perform normal union find.
If the tree is now valid
simply return candidate B
else if candidates not existing
we find a circle, return current edge;
else
remove candidate A instead of B.
Java:
class Solution {
public int[] findRedundantDirectedConnection(int[][] edges) {
int[] can1 = {-1, -1};
int[] can2 = {-1, -1};
int[] parent = new int[edges.length + 1];
for (int i = 0; i < edges.length; i++) {
if (parent[edges[i][1]] == 0) {
parent[edges[i][1]] = edges[i][0];
} else {
can2 = new int[] {edges[i][0], edges[i][1]};
can1 = new int[] {parent[edges[i][1]], edges[i][1]};
edges[i][1] = 0;
}
}
for (int i = 0; i < edges.length; i++) {
parent[i] = i;
}
for (int i = 0; i < edges.length; i++) {
if (edges[i][1] == 0) {
continue;
}
int child = edges[i][1], father = edges[i][0];
if (root(parent, father) == child) {
if (can1[0] == -1) {
return edges[i];
}
return can1;
}
parent[child] = father;
}
return can2;
}
int root(int[] parent, int i) {
while (i != parent[i]) {
parent[i] = parent[parent[i]];
i = parent[i];
}
return i;
}
}
Python:
# Time: O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n)
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x] def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root or \
y != y_root: # already has a father
return False
self.set[y_root] = x_root
self.count -= 1
return True class Solution(object):
def findRedundantDirectedConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
union_find = UnionFind(len(edges)+1)
for edge in edges:
if not union_find.union_set(*edge):
return edge
return []
C++:
class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> parent(n+1, 0), candA, candB;
// step 1, check whether there is a node with two parents
for (auto &edge:edges) {
if (parent[edge[1]] == 0)
parent[edge[1]] = edge[0];
else {
candA = {parent[edge[1]], edge[1]};
candB = edge;
edge[1] = 0;
}
}
// step 2, union find
for (int i = 1; i <= n; i++) parent[i] = i;
for (auto &edge:edges) {
if (edge[1] == 0) continue;
int u = edge[0], v = edge[1], pu = root(parent, u);
// Now every node only has 1 parent, so root of v is implicitly v
if (pu == v) {
if (candA.empty()) return edge;
return candA;
}
parent[v] = pu;
}
return candB;
}
private:
int root(vector<int>& parent, int k) {
if (parent[k] != k)
parent[k] = root(parent, parent[k]);
return parent[k];
}
};
类似题目:
[LeetCode] 684. Redundant Connection 冗余的连接
All LeetCode Questions List 题目汇总
[LeetCode] 685. Redundant Connection II 冗余的连接之 II的更多相关文章
- [LeetCode] 685. Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- LeetCode 685. Redundant Connection II
原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...
- [LeetCode] Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] 684. Redundant Connection 冗余的连接
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
- LN : leetcode 684 Redundant Connection
lc 684 Redundant Connection 684 Redundant Connection In this problem, a tree is an undirected graph ...
- LeetCode 684. Redundant Connection 冗余连接(C++/Java)
题目: In this problem, a tree is an undirected graph that is connected and has no cycles. The given in ...
- leetcode 684. Redundant Connection
We are given a "tree" in the form of a 2D-array, with distinct values for each node. In th ...
- Leetcode之并查集专题-684. 冗余连接(Redundant Connection)
Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...
- [LeetCode] Redundant Connection 冗余的连接
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
随机推荐
- UVA1537 Picnic Planning(思维+最小生成树)
将1号点从图中去掉过后,图会形成几个连通块,那么我们首先可以在这些连通块内部求最小生成树. 假设有\(tot\)个连通块,那么我们会从1号点至少选\(tot\)个出边,使得图连通.这时我们贪心地选择最 ...
- .Net Core控制台生成exe能独立运行
.Net Core控制台生成exe能独立运行,依赖文件都单独生成在一个publish文件夹里 方式一:强烈推荐,能独立运行,依赖DLL也会生成出来,支持无安装环境也能到处运行 按win+R输入cmd在 ...
- STLNormalFunc
#include <iostream> #include <vector> using namespace std; void main_1() { vector<int ...
- Java内存区域与内存溢出异常(jdk 6,7,8)
运行时数据区域 Java虚拟机在执行Java程序的过程中会把它关联的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户 ...
- c#中的继承学习总结
c#的继承方法,大体上和c++的类似,但是有点区别的,我这里刚刚初学,因此把重点记录下. 1.派生类继承了父类,那么,如果父类的方法和数据都是public,那么派生类都会继承.派生类可以直接调用父类的 ...
- tensorflow API _ 4 (优化器配置)
"""Configures the optimizer used for training. Args: learning_rate: A scalar or `Tens ...
- Guava com.google.common.base.Stopwatch Spark程序在yarn中 MethodNotFound
今天在公司提交一个Spark 读取hive中的数据,写入JanusGraph 的app,自己本地调试没有问题,放入环境中提交到yarn 中时,发现app 跑不起. yarn 中日志,也比较明显,app ...
- Linux 字符集的查看及修改
一·查看字符集 字符集在系统中体现形式是一个环境变量,以CentOS6.5为例,其查看当前终端使用字符集的方式可以有以下几种方式: 第一种: [root@Testa-www tmp]# echo $L ...
- 【洛谷P5050】 【模板】多项式多点求值
code: #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define set ...
- 原生js打地鼠
我们要做的是一个打地鼠的游戏,只用原生js 1.导入需要的图片 2.编写页面css样式demo.css *{ margin:0; padding:0; } .game{ position: relat ...