Write a program to find the nth super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k.

Example:

Input: n = 12, primes = [2,7,13,19]
Output: 32
Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12
super ugly numbers given primes = [2,7,13,19] of size 4.

Note:

  • 1 is a super ugly number for any given primes.
  • The given numbers in primes are in ascending order.
  • 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.
  • The nth super ugly number is guaranteed to fit in a 32-bit signed integer.

264. Ugly Number II 的拓展,还是找出第n个丑陋数,但质数集合不在只是2,3,5,而是可以任意给定。难度增加了,但本质上和Ugly Number II 没有什么区别,由于不知道质数的个数,可以用一个idx数组来保存当前的位置,然后从每个子链中取出一个数,找出其中最小值,然后更新idx数组对应位置,注意有可能最小值不止一个,要更新所有最小值的位置。

解题思路:
要使得super ugly number不漏掉,那么需要使用每个因子去乘以其对应的“第一个”丑数。那么何为对应的“第一个”丑数?

首先,利用ugly[]数组来保存所有的超级丑数,ugly[i]表示第i+1个超级丑数;

接着利用pointer[]数组来表示每个因子对应的“第一个”丑数的下标。pointer数组长度当然需要和primes长度一致,且初始化为0,代表着每个因子对应的“第一个”丑数都是ugly[0];

接下来我们以primes[2,7,13,19],pointer[0,0,0,0],ugly[0]=1作为初始条件往下看:

遍历primes数组,用每个因子都乘以其对应的第一个丑数,即ugly[0]=1,可以发现1x2=2是最小值,故ugly[1]=2;但要注意,此时的pointer数组发生了变化:

由于当前产生的丑数2是由2这个因子乘以它的对应“第一个”丑数得到的,因此需要将pointer[0]加一。pointer[0]是2这个因子对应的“第一个”丑数的下标,因为当前已经使用了2x1,如果不更新,则下一轮还是会用2这个因子去乘以第一个丑数(ugly[0]).将其更新后,则意味着2这个因子对应的第一个丑数已经改变了,变成了ugly[1].而其他三个对应的“第一个”丑数还是ugly[0]。

我们接着看下一轮:2x2【即ugly[pointer[1]]x2】,1x7,1x13,1x19,发现还是2这个因子得到的数最小,故更新:ugly[2]=2x2=4,pointer[0]=2;

下一轮:4x2,1x7,1x13,1x19,可以发现当前这一轮最小值是7,且由因子7产生,故更新:ugly[3]=7,pointer[1]=1;

以此类推....
如果更新过程中,出现最小值不止一个的话,则其对应的pointer的值都需要增加1。

Java:

public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n+1];
ugly[0]=1;
int[] pointer = new int[primes.length];
for(int i=1;i<n;i++) {
int min=Integer.MAX_VALUE;
int minIndex = 0;
for(int j=0;j<primes.length;j++) {
if(ugly[pointer[j]]*primes[j]<min) {
min=ugly[pointer[j]]*primes[j];
minIndex = j;
}else if(ugly[pointer[j]]*primes[j]==min) {
pointer[j]++;
}
}
ugly[i]=min;
pointer[minIndex]++;
}
return ugly[n-1];
}

Java:1

public int nthSuperUglyNumberI(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length]; ugly[0] = 1;
for (int i = 1; i < n; i++) {
//find next
ugly[i] = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++)
ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]); //slip duplicate
for (int j = 0; j < primes.length; j++) {
while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
}
} return ugly[n - 1];
}

Java:2

public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length];
int[] val = new int[primes.length];
Arrays.fill(val, 1); int next = 1;
for (int i = 0; i < n; i++) {
ugly[i] = next; next = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++) {
//skip duplicate and avoid extra multiplication
if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
//find next ugly number
next = Math.min(next, val[j]);
}
} return ugly[n - 1];
}

Java: 3 index heap 

public int nthSuperUglyNumberHeap(int n, int[] primes) {
int[] ugly = new int[n]; PriorityQueue<Num> pq = new PriorityQueue<>();
for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
ugly[0] = 1; for (int i = 1; i < n; i++) {
ugly[i] = pq.peek().val;
while (pq.peek().val == ugly[i]) {
Num nxt = pq.poll();
pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
}
} return ugly[n - 1];
} private class Num implements Comparable<Num> {
int val;
int idx;
int p; public Num(int val, int idx, int p) {
this.val = val;
this.idx = idx;
this.p = p;
} @Override
public int compareTo(Num that) {
return this.val - that.val;
}
} 

Python:

def nthSuperUglyNumber(self, n, primes):
ugly = [1]
pointers = [0]*len(primes) for i in range(1,n):
minu = float("inf")
minIndex = 0
for j in range(len(primes)):
if primes[j] * ugly[pointers[j]] < minu:
minu = primes[j] * ugly[pointers[j]]
minIndex = j
elif primes[j] * ugly[pointers[j]] == minu:
pointers[j] += 1
ugly.append(minu)
pointers[minIndex] += 1
return ugly[-1]  

Python:

# Heap solution. (620ms)
class Solution(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
ugly_by_last_prime[i] = k
idx[k] += 1
while ugly_by_last_prime[idx[k]] > k:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]

Python:

# Time:  O(n * k)
# Space: O(n + k)
# Hash solution. (932ms)
class Solution2(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
ugly_set.add(p) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
while (primes[k] * uglies[idx[k]]) in ugly_set:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
ugly_set.add(primes[k] * uglies[idx[k]]) return uglies[-1]

Python:  

# Time:  O(n * logk) ~ O(n * klogk)
# Space: O(n + k)
class Solution3(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap = [1], [0] * len(primes), []
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
min_val, k = heap[0]
uglies += [min_val] while heap[0][0] == min_val: # worst time: O(klogk)
min_val, k = heapq.heappop(heap)
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]    

C++:

class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> res(1, 1), idx(primes.size(), 0);
while (res.size() < n) {
vector<int> tmp;
int mn = INT_MAX;
for (int i = 0; i < primes.size(); ++i) {
tmp.push_back(res[idx[i]] * primes[i]);
}
for (int i = 0; i < primes.size(); ++i) {
mn = min(mn, tmp[i]);
}
for (int i = 0; i < primes.size(); ++i) {
if (mn == tmp[i]) ++idx[i];
}
res.push_back(mn);
}
return res.back();
}
};

C++:  

class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> dp(n, 1), idx(primes.size(), 0);
for (int i = 1; i < n; ++i) {
dp[i] = INT_MAX;
for (int j = 0; j < primes.size(); ++j) {
dp[i] = min(dp[i], dp[idx[j]] * primes[j]);
}
for (int j = 0; j < primes.size(); ++j) {
if (dp[i] == dp[idx[j]] * primes[j]) {
++idx[j];
}
}
}
return dp.back();
}
};

  

类似题目:

[LeetCode] 263. Ugly Number 丑陋数

[LeetCode] 264. Ugly Number II 丑陋数 II

All LeetCode Questions List 题目汇总

[LeetCode] 313. Super Ugly Number 超级丑陋数的更多相关文章

  1. [LeetCode]313. Super Ugly Number超级丑数,丑数系列看这一道就行了

    丑数系列的题看这一道就可以了 /* 和ugly number2差不多,不过这次的质因子多了,所以用数组来表示质因子的target坐标 target坐标指的是这个质因子此次要乘的前任丑数是谁 */ pu ...

  2. [LeetCode] Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  3. [LintCode] Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  4. 313 Super Ugly Number 超级丑数

    编写一段程序来寻找第 n 个超级丑数.超级丑数是指其所有质因数都在长度为k的质数列表primes中的正整数.例如,[1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] ...

  5. Leetcode 313. super ugly number

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  6. [LeetCode] 264. Ugly Number II 丑陋数 II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  7. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...

  8. [LeetCode] Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  9. [LeetCode] 264. Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

随机推荐

  1. Tensorflow简单实践系列(一):安装和运行

    TensorFlow 是谷歌开发的机器学习框架. 安装 TensorFlow 直接使用 pip 安装即可,添加豆瓣镜像可以加快速度: pip install tensorflow -i https:/ ...

  2. Jmeter连接mysql,如何用delete、update、insert真正删除、更改、插入数据库里的数据;

    1.如下图,当插入数据的时候如图对应填写,查询数据的时候上面插入的那条数据就会显示,但是如果不执行下图的提交数据:到数据库里查的时候,插入的这条数据实际上并没有插入成功: . 结果:如果没有提交数据, ...

  3. Python使用pip安装TensorFlow模块

    1.首先确保已经安装python,然后用pip来安装matplotlib模块. 2.进入到cmd窗口下,建议执行python -m pip install -U pip setuptools进行升级. ...

  4. 如何使用project制定项目计划?(附详细步骤截图)

    使用project制定项目计划可以分为六个步骤,如下图(1): 图(1)-project制定项目计划步骤 下面我们就以project2010为例,按上图所示步骤对如何制定项目计划进行详细说明: 一.创 ...

  5. java中异步调用注意

    Future接口是Java标准API的一部分,在java.util.concurrent包中.Future接口是Java线程Future模式的实现,可以来进行异步计算. 有了Future就可以进行三段 ...

  6. .net Web 项目的文件/文件夹上传下载

    以ASP.NET Core WebAPI 作后端 API ,用 Vue 构建前端页面,用 Axios 从前端访问后端 API ,包括文件的上传和下载. 准备文件上传的API #region 文件上传  ...

  7. 关于H5判定区域里面滑动到底部,加载更多的总结

    1.如何判定H5中滑动到底部,然后加载更多的功能实现. 思路:我们需要设定一个固定高度的盒子,然后我们利用scroll来监听滚动,当scrollTop(滚动的距离) + clientHeight(页面 ...

  8. Python 下载超大文件

    使用python下载超大文件, 直接全部下载, 文件过大, 可能会造成内存不足, 这时候要使用requests 的 stream模式, 主要代码如下 iter_content:一块一块的遍历要下载的内 ...

  9. HTML之微信全屏播放视频

    不废话,上代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...

  10. 解决IE报错[vue router]Failed to resolve async component default:strict 模式下不允许分配到只读属性

    之前遇到过一个奇怪的问题,在其他浏览器下一切正常,但在万恶的IE下,却一直不行. 具体问题场景就是:比如orderDetail页面出现问题,那么只要是路由跳转的,点第1次无法跳转,必须得点第2次才可以 ...