[LeetCode] 313. Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k.
Example:
Input: n = 12,primes=[2,7,13,19]
Output: 32
Explanation:[1,2,4,7,8,13,14,16,19,26,28,32]is the sequence of the first 12
super ugly numbers givenprimes=[2,7,13,19]of size 4.
Note:
1is a super ugly number for any givenprimes.- The given numbers in
primesare in ascending order. - 0 <
k≤ 100, 0 <n≤ 106, 0 <primes[i]< 1000. - The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
264. Ugly Number II 的拓展,还是找出第n个丑陋数,但质数集合不在只是2,3,5,而是可以任意给定。难度增加了,但本质上和Ugly Number II 没有什么区别,由于不知道质数的个数,可以用一个idx数组来保存当前的位置,然后从每个子链中取出一个数,找出其中最小值,然后更新idx数组对应位置,注意有可能最小值不止一个,要更新所有最小值的位置。
解题思路:
要使得super ugly number不漏掉,那么需要使用每个因子去乘以其对应的“第一个”丑数。那么何为对应的“第一个”丑数?
首先,利用ugly[]数组来保存所有的超级丑数,ugly[i]表示第i+1个超级丑数;
接着利用pointer[]数组来表示每个因子对应的“第一个”丑数的下标。pointer数组长度当然需要和primes长度一致,且初始化为0,代表着每个因子对应的“第一个”丑数都是ugly[0];
接下来我们以primes[2,7,13,19],pointer[0,0,0,0],ugly[0]=1作为初始条件往下看:
遍历primes数组,用每个因子都乘以其对应的第一个丑数,即ugly[0]=1,可以发现1x2=2是最小值,故ugly[1]=2;但要注意,此时的pointer数组发生了变化:
由于当前产生的丑数2是由2这个因子乘以它的对应“第一个”丑数得到的,因此需要将pointer[0]加一。pointer[0]是2这个因子对应的“第一个”丑数的下标,因为当前已经使用了2x1,如果不更新,则下一轮还是会用2这个因子去乘以第一个丑数(ugly[0]).将其更新后,则意味着2这个因子对应的第一个丑数已经改变了,变成了ugly[1].而其他三个对应的“第一个”丑数还是ugly[0]。
我们接着看下一轮:2x2【即ugly[pointer[1]]x2】,1x7,1x13,1x19,发现还是2这个因子得到的数最小,故更新:ugly[2]=2x2=4,pointer[0]=2;
下一轮:4x2,1x7,1x13,1x19,可以发现当前这一轮最小值是7,且由因子7产生,故更新:ugly[3]=7,pointer[1]=1;
以此类推....
如果更新过程中,出现最小值不止一个的话,则其对应的pointer的值都需要增加1。
Java:
public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n+1];
ugly[0]=1;
int[] pointer = new int[primes.length];
for(int i=1;i<n;i++) {
int min=Integer.MAX_VALUE;
int minIndex = 0;
for(int j=0;j<primes.length;j++) {
if(ugly[pointer[j]]*primes[j]<min) {
min=ugly[pointer[j]]*primes[j];
minIndex = j;
}else if(ugly[pointer[j]]*primes[j]==min) {
pointer[j]++;
}
}
ugly[i]=min;
pointer[minIndex]++;
}
return ugly[n-1];
}
Java:1
public int nthSuperUglyNumberI(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length];
ugly[0] = 1;
for (int i = 1; i < n; i++) {
//find next
ugly[i] = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++)
ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]);
//slip duplicate
for (int j = 0; j < primes.length; j++) {
while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
}
}
return ugly[n - 1];
}
Java:2
public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length];
int[] val = new int[primes.length];
Arrays.fill(val, 1);
int next = 1;
for (int i = 0; i < n; i++) {
ugly[i] = next;
next = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++) {
//skip duplicate and avoid extra multiplication
if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
//find next ugly number
next = Math.min(next, val[j]);
}
}
return ugly[n - 1];
}
Java: 3 index heap
public int nthSuperUglyNumberHeap(int n, int[] primes) {
int[] ugly = new int[n];
PriorityQueue<Num> pq = new PriorityQueue<>();
for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
ugly[0] = 1;
for (int i = 1; i < n; i++) {
ugly[i] = pq.peek().val;
while (pq.peek().val == ugly[i]) {
Num nxt = pq.poll();
pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
}
}
return ugly[n - 1];
}
private class Num implements Comparable<Num> {
int val;
int idx;
int p;
public Num(int val, int idx, int p) {
this.val = val;
this.idx = idx;
this.p = p;
}
@Override
public int compareTo(Num that) {
return this.val - that.val;
}
}
Python:
def nthSuperUglyNumber(self, n, primes):
ugly = [1]
pointers = [0]*len(primes) for i in range(1,n):
minu = float("inf")
minIndex = 0
for j in range(len(primes)):
if primes[j] * ugly[pointers[j]] < minu:
minu = primes[j] * ugly[pointers[j]]
minIndex = j
elif primes[j] * ugly[pointers[j]] == minu:
pointers[j] += 1
ugly.append(minu)
pointers[minIndex] += 1
return ugly[-1]
Python:
# Heap solution. (620ms)
class Solution(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
ugly_by_last_prime[i] = k
idx[k] += 1
while ugly_by_last_prime[idx[k]] > k:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]
Python:
# Time: O(n * k)
# Space: O(n + k)
# Hash solution. (932ms)
class Solution2(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
ugly_set.add(p) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
while (primes[k] * uglies[idx[k]]) in ugly_set:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
ugly_set.add(primes[k] * uglies[idx[k]]) return uglies[-1]
Python:
# Time: O(n * logk) ~ O(n * klogk)
# Space: O(n + k)
class Solution3(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap = [1], [0] * len(primes), []
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
min_val, k = heap[0]
uglies += [min_val] while heap[0][0] == min_val: # worst time: O(klogk)
min_val, k = heapq.heappop(heap)
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]
C++:
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> res(1, 1), idx(primes.size(), 0);
while (res.size() < n) {
vector<int> tmp;
int mn = INT_MAX;
for (int i = 0; i < primes.size(); ++i) {
tmp.push_back(res[idx[i]] * primes[i]);
}
for (int i = 0; i < primes.size(); ++i) {
mn = min(mn, tmp[i]);
}
for (int i = 0; i < primes.size(); ++i) {
if (mn == tmp[i]) ++idx[i];
}
res.push_back(mn);
}
return res.back();
}
};
C++:
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> dp(n, 1), idx(primes.size(), 0);
for (int i = 1; i < n; ++i) {
dp[i] = INT_MAX;
for (int j = 0; j < primes.size(); ++j) {
dp[i] = min(dp[i], dp[idx[j]] * primes[j]);
}
for (int j = 0; j < primes.size(); ++j) {
if (dp[i] == dp[idx[j]] * primes[j]) {
++idx[j];
}
}
}
return dp.back();
}
};
类似题目:
[LeetCode] 263. Ugly Number 丑陋数
[LeetCode] 264. Ugly Number II 丑陋数 II
All LeetCode Questions List 题目汇总
[LeetCode] 313. Super Ugly Number 超级丑陋数的更多相关文章
- [LeetCode]313. Super Ugly Number超级丑数,丑数系列看这一道就行了
丑数系列的题看这一道就可以了 /* 和ugly number2差不多,不过这次的质因子多了,所以用数组来表示质因子的target坐标 target坐标指的是这个质因子此次要乘的前任丑数是谁 */ pu ...
- [LeetCode] Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- [LintCode] Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- 313 Super Ugly Number 超级丑数
编写一段程序来寻找第 n 个超级丑数.超级丑数是指其所有质因数都在长度为k的质数列表primes中的正整数.例如,[1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] ...
- Leetcode 313. super ugly number
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- [LeetCode] 264. Ugly Number II 丑陋数 II
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
- leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes
263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...
- [LeetCode] Ugly Number II 丑陋数之二
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
- [LeetCode] 264. Ugly Number II 丑陋数之二
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
随机推荐
- poj3522Slim Span(暴力+Kruskal)
思路: 最小生成树是瓶颈生成树,瓶颈生成树满足最大边最小. 数据量较小,所以只需要通过Kruskal,将边按权值从小到大排序,枚举最小边求最小生成树,时间复杂度为O( nm(logm) ) #incl ...
- .NET 使用 VLC 播放视频
使用 VLC 播放监控有几个月了,现在是多个项目中都有用到.在使用的过程中也有一些细节供大家参考. 一.对 VLC 的了解 VLC 是一个开源的跨平台多媒体播放器及框架. VLC 官方出的有播放器.编 ...
- sqoop从oracle数据库抽取数据,导入到hive
环境: hadoop-2.7.5 sqoop-1.4.7 zookeeper-3.4.10 hive-2.3.3 (使用mysql配置元数据库) jdk1.8.0_151 oracle 11.2.0. ...
- windows 10 下使用Navicat for oracle 数据库还原
一.前期准备 1.安装windows 10系统 2.安装oracle 11g 数据库 3.安装PLsql(也不需要) 4.安装sqlplus(这个必须有) 5.使用下面这个东西新建数据库(不懂创建的话 ...
- nginx的alias与root的区别
root的写法: location /request_path/image/ { root /local_path/image/; } 这样配置的结果就是当客户端请求 /request_path/im ...
- 8-html表格
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- Linux端口转发工具rinetd
介绍:Rinetd是为在一个Unix和Linux操作系统中为重定向传输控制协议(TCP)连接的一个工具.Rinetd是单一过程的服务器,它处理任何数量的连接到在配置文件etc/rinetd中指定的地址 ...
- 学习Spring-Data-Jpa(十)---注解式方法查询之@Query、@Modifying与派生delete
1.@Query 对于少量的查询,使用@NamedQuery在实体上声明查询是一种有效的办法,并且可以很好的工作.由于查询本身绑定到执行它们的java方法,实际上可以通过Spring-Data-Jpa ...
- java大附件上传,支持断点续传
一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...
- 2019.12.11 java程序中几种常见的异常以及出现此异常的原因
1.java.lang.NullpointerException(空指针异常) 原因:这个异常经常遇到,异常的原因是程序中有空指针,即程序中调用了未经初始化的对象或者是不存在的对象. 经常出现在创建对 ...