【神经网络与深度学习】【计算机视觉】Fast R-CNN

首先声明:本文很多内容来自两个博客: RCNN,
Fast-RCNN, Faster-RCNN的一些事目标检测--从RCNN到Faster
RCNN 串烧 。
先回归一下: R-CNN ,SPP-net
R-CNN和SPP-net在训练时pipeline是隔离的:提取proposal,CNN提取特征,SVM分类,bbox regression。
Fast R-CNN 两大主要贡献点 :
- 1 实现大部分end-to-end训练(提proposal阶段除外): 所有的特征都暂存在显存中,就不需要额外的磁盘空。
- joint training (SVM分类,bbox回归 联合起来在CNN阶段训练)把最后一层的Softmax换成两个,一个是对区域的分类Softmax(包括背景),另一个是对bounding box的微调。这个网络有两个输入,一个是整张图片,另一个是候选proposals算法产生的可能proposals的坐标。(对于SVM和Softmax,论文在SVM和Softmax的对比实验中说明,SVM的优势并不明显,故直接用Softmax将整个网络整合训练更好。对于联合训练: 同时利用了分类的监督信息和回归的监督信息,使得网络训练的更加鲁棒,效果更好。这两种信息是可以有效联合的。)
- 2 提出了一个RoI层,算是SPP的变种,SPP是pooling成多个固定尺度,RoI只pooling到单个固定的尺度 (论文通过实验得到的结论是多尺度学习能提高一点点mAP,不过计算量成倍的增加,故单尺度训练的效果更好。)
其它贡献点:
- 指出SPP-net训练时的不足之处,并提出新的训练方式,就是把同张图片的prososals作为一批进行学习,而proposals的坐标直接映射到conv5层上,这样相当于一个batch一张图片的所以训练样本只卷积了一次。文章提出他们通过这样的训练方式或许存在不收敛的情况,不过实验发现,这种情况并没有发生。这样加快了训练速度。 (实际训练时,一个batch训练两张图片,每张图片训练64个RoIs(Region of Interest))
注意点:
- 论文在回归问题上并没有用很常见的2范数作为回归,而是使用所谓的鲁棒L1范数作为损失函数。
- 论文将比较大的全链接层用SVD分解了一下使得检测的时候更加迅速。虽然是别人的工作,但是引过来恰到好处(矩阵相关的知识是不是可以在检测中发挥更大的作用呢?)。
ROI Pooling
与SPP的目的相同:如何把不同尺寸的ROI映射为固定大小的特征。ROI就是特殊的SPP,只不过它没有考虑多个空间尺度,只用单个尺度(下图只是大致示意图)。
ROI Pooling的具体实现可以看做是针对ROI区域的普通整个图像feature map的Pooling,只不过因为不是固定尺寸的输入,因此每次的pooling网格大小得手动计算,比如某个ROI区域坐标为,那么输入size为
,如果pooling的输出size为
,那么每个网格的size为
。
Bounding-box Regression
有了ROI Pooling层其实就可以完成最简单粗暴的深度对象检测了,也就是先用selective search等proposal提取算法得到一批box坐标,然后输入网络对每个box包含一个对象进行预测,此时,神经网络依然仅仅是一个图片分类的工具而已,只不过不是整图分类,而是ROI区域的分类,显然大家不会就此满足,那么,能不能把输入的box坐标也放到深度神经网络里然后进行一些优化呢?rbg大神于是又说了"yes"。在Fast-RCNN中,有两个输出层:第一个是针对每个ROI区域的分类概率预测,第二个则是针对每个ROI区域坐标的偏移优化
,
是多类检测的类别序号。这里我们着重介绍第二部分,即坐标偏移优化。
假设对于类别,在图片中标注了一个groundtruth坐标:
,而预测值为
,二者理论上越接近越好,这里定义损失函数:
这里, 中的x即为
即对应坐标的差距。该函数在
(−1,1) 之间为二次函数,而其他区域为线性函数,作者表示这种形式可以增强模型对异常数据的鲁棒性,整个函数在matplotlib中画出来是这样的
对应的代码在smooth_L1_loss_layer.cu中。
参考:
【神经网络与深度学习】【计算机视觉】Fast R-CNN的更多相关文章
- [神经网络与深度学习][计算机视觉]SSD编译时遇到了json_parser_read.hpp:257:264: error: ‘type name’ declared as function ret
运行make之后出现如下错误: /usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: 'type n ...
- 【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- 深度学习(一)——CNN算法流程
深度学习(一)——CNN(卷积神经网络)算法流程 参考:http://dataunion.org/11692.html 0 引言 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验【中英】
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + ...
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- 如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助? 作者:知乎用户链接:https://www.zhihu.com/question/326034346/answer/730 ...
随机推荐
- Linux UART驱动分析
1. 介绍 8250是IBM PC及兼容机使用的一种串口芯片; 16550是一种带先进先出(FIFO)功能的8250系列串口芯片; 16550A则是16550的升级版本, 修复了FIFO相关BUG, ...
- 清除DNS缓存和刷新DHCP列表
ipconfig /release 只是释放IP地址,然后还需要ipconfig /renew在重新获取一下 如何清除DNS缓存?开始-运行,如下图所示: 在谈出的对话框中输入“cmd”,如下图所示: ...
- [Javascript] Use requestIdleCallback to schedule JavaScript tasks at an optimal time
JavaScript is single-threaded, which can present some problems when creating an interactive user exp ...
- 2019-2020-1 20199302《Linux内核原理与分析》第十一周作业
缓冲区溢出 缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况.这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段.这一漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢 ...
- learning scala akka ask_pattern
package com.example import akka.actor._ import akka.util.Timeout object Tutorial_03_Ask_Pattern exte ...
- Spring AOP的实现记录操作日志
适用场景: 记录接口方法的执行情况,记录相关状态到日志中. 注解类:LogTag.java package com.lichmama.spring.annotation; import java.la ...
- java web开发及Servlet常用的代码
日志 1.使用门面模式的slfj,并结合log4j,logback. 2.info.debug.error,要写清楚. 3.使用占位符,如下: log.info("用户id为: {} &qu ...
- MySQL免安装配置步骤
此方式为直接解压压缩包安装MySQL 1.下载相关压缩包 官网下载地址:https://dev.mysql.com/downloads/mysql/ 下载后将压缩包解压至自己想要的文件路径即可 2.新 ...
- Java文件上传下载原理
文件上传下载原理 在TCP/IP中,最早出现的文件上传机制是FTP.它是将文件由客户端发送到服务器的标准机制. 但是在jsp编程中不能使用FTP方法来上传文件,这是由jsp运行机制所决定的 文件上传原 ...
- JQuery selector form input
var inputPhoneInFormActivity = $("form#formtab input[name='phone']"); if(inputPhoneInFormA ...